This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facnn2 | |- ( N e. NN -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnnnn0 | |- ( N e. NN <-> ( N e. CC /\ ( N - 1 ) e. NN0 ) ) |
|
| 2 | facp1 | |- ( ( N - 1 ) e. NN0 -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) ) |
|
| 3 | 2 | adantl | |- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) ) |
| 4 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 5 | 4 | fveq2d | |- ( N e. CC -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ! ` N ) ) |
| 6 | 5 | adantr | |- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ! ` N ) ) |
| 7 | 4 | oveq2d | |- ( N e. CC -> ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
| 8 | 7 | adantr | |- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
| 9 | 3 6 8 | 3eqtr3d | |- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
| 10 | 1 9 | sylbi | |- ( N e. NN -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |