This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variation on atanlogadd , to show that sqrt ( 1 +i z ) / sqrt ( 1 - i z ) = sqrt ( ( 1 +i z ) / ( 1 - i z ) ) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanlogsub | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 4 | 3 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 5 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 6 | 2 4 5 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 7 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 8 | 1 6 7 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 9 | 3 | simp3bi | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 10 | 8 9 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 11 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 12 | 1 6 11 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 13 | 3 | simp2bi | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 14 | 12 13 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 15 | 10 14 | subcld | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 16 | 15 | adantr | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 17 | 4 | recld | |- ( A e. dom arctan -> ( Re ` A ) e. RR ) |
| 18 | 0re | |- 0 e. RR |
|
| 19 | lttri2 | |- ( ( ( Re ` A ) e. RR /\ 0 e. RR ) -> ( ( Re ` A ) =/= 0 <-> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) ) |
|
| 20 | 17 18 19 | sylancl | |- ( A e. dom arctan -> ( ( Re ` A ) =/= 0 <-> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) ) |
| 21 | 20 | biimpa | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) |
| 22 | 15 | imnegd | |- ( A e. dom arctan -> ( Im ` -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 23 | 10 14 | negsubdi2d | |- ( A e. dom arctan -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 24 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 25 | 2 4 24 | sylancr | |- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 26 | 25 | oveq2d | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
| 27 | negsub | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
|
| 28 | 1 6 27 | sylancr | |- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 29 | 26 28 | eqtrd | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
| 30 | 29 | fveq2d | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 31 | 25 | oveq2d | |- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) |
| 32 | subneg | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
|
| 33 | 1 6 32 | sylancr | |- ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 34 | 31 33 | eqtrd | |- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) |
| 35 | 34 | fveq2d | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 36 | 30 35 | oveq12d | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 37 | 23 36 | eqtr4d | |- ( A e. dom arctan -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
| 38 | 37 | fveq2d | |- ( A e. dom arctan -> ( Im ` -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) |
| 39 | 22 38 | eqtr3d | |- ( A e. dom arctan -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) |
| 40 | 39 | adantr | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) |
| 41 | atandmneg | |- ( A e. dom arctan -> -u A e. dom arctan ) |
|
| 42 | 17 | lt0neg1d | |- ( A e. dom arctan -> ( ( Re ` A ) < 0 <-> 0 < -u ( Re ` A ) ) ) |
| 43 | 42 | biimpa | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> 0 < -u ( Re ` A ) ) |
| 44 | 4 | adantr | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> A e. CC ) |
| 45 | 44 | renegd | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 46 | 43 45 | breqtrrd | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> 0 < ( Re ` -u A ) ) |
| 47 | atanlogsublem | |- ( ( -u A e. dom arctan /\ 0 < ( Re ` -u A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
|
| 48 | 41 46 47 | syl2an2r | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 49 | picn | |- _pi e. CC |
|
| 50 | 49 | negnegi | |- -u -u _pi = _pi |
| 51 | 50 | oveq2i | |- ( -u _pi (,) -u -u _pi ) = ( -u _pi (,) _pi ) |
| 52 | 48 51 | eleqtrrdi | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) |
| 53 | 40 52 | eqeltrd | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) |
| 54 | pire | |- _pi e. RR |
|
| 55 | 54 | renegcli | |- -u _pi e. RR |
| 56 | 15 | adantr | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 57 | 56 | imcld | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) |
| 58 | iooneg | |- ( ( -u _pi e. RR /\ _pi e. RR /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) <-> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) ) |
|
| 59 | 55 54 57 58 | mp3an12i | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) <-> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) ) |
| 60 | 53 59 | mpbird | |- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 61 | atanlogsublem | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
|
| 62 | 60 61 | jaodan | |- ( ( A e. dom arctan /\ ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 63 | 21 62 | syldan | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 64 | eliooord | |- ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) -> ( -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) ) |
|
| 65 | 63 64 | syl | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) ) |
| 66 | 65 | simpld | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 67 | 65 | simprd | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) |
| 68 | 16 | imcld | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) |
| 69 | ltle | |- ( ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR /\ _pi e. RR ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) |
|
| 70 | 68 54 69 | sylancl | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) |
| 71 | 67 70 | mpd | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) |
| 72 | ellogrn | |- ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log <-> ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) |
|
| 73 | 16 66 71 72 | syl3anbrc | |- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |