This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandmneg | |- ( A e. dom arctan -> -u A e. dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm3 | |- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
|
| 2 | 1 | simplbi | |- ( A e. dom arctan -> A e. CC ) |
| 3 | 2 | negcld | |- ( A e. dom arctan -> -u A e. CC ) |
| 4 | sqneg | |- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
|
| 5 | 2 4 | syl | |- ( A e. dom arctan -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 6 | 1 | simprbi | |- ( A e. dom arctan -> ( A ^ 2 ) =/= -u 1 ) |
| 7 | 5 6 | eqnetrd | |- ( A e. dom arctan -> ( -u A ^ 2 ) =/= -u 1 ) |
| 8 | atandm3 | |- ( -u A e. dom arctan <-> ( -u A e. CC /\ ( -u A ^ 2 ) =/= -u 1 ) ) |
|
| 9 | 3 7 8 | sylanbrc | |- ( A e. dom arctan -> -u A e. dom arctan ) |