This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for atanbnd . (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanbndlem | |- ( A e. RR+ -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 2 | atanrecl | |- ( A e. RR -> ( arctan ` A ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( A e. RR+ -> ( arctan ` A ) e. RR ) |
| 4 | picn | |- _pi e. CC |
|
| 5 | 2cn | |- 2 e. CC |
|
| 6 | 2ne0 | |- 2 =/= 0 |
|
| 7 | divneg | |- ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) |
|
| 8 | 4 5 6 7 | mp3an | |- -u ( _pi / 2 ) = ( -u _pi / 2 ) |
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | ax-icn | |- _i e. CC |
|
| 11 | 1 | recnd | |- ( A e. RR+ -> A e. CC ) |
| 12 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 13 | 10 11 12 | sylancr | |- ( A e. RR+ -> ( _i x. A ) e. CC ) |
| 14 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 15 | 9 13 14 | sylancr | |- ( A e. RR+ -> ( 1 + ( _i x. A ) ) e. CC ) |
| 16 | atanre | |- ( A e. RR -> A e. dom arctan ) |
|
| 17 | 1 16 | syl | |- ( A e. RR+ -> A e. dom arctan ) |
| 18 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 19 | 17 18 | sylib | |- ( A e. RR+ -> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 20 | 19 | simp3d | |- ( A e. RR+ -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 21 | 15 20 | logcld | |- ( A e. RR+ -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 22 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 23 | 9 13 22 | sylancr | |- ( A e. RR+ -> ( 1 - ( _i x. A ) ) e. CC ) |
| 24 | 19 | simp2d | |- ( A e. RR+ -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 25 | 23 24 | logcld | |- ( A e. RR+ -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 26 | 21 25 | subcld | |- ( A e. RR+ -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 27 | imre | |- ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Re ` ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
|
| 28 | 26 27 | syl | |- ( A e. RR+ -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Re ` ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 29 | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 30 | 17 29 | syl | |- ( A e. RR+ -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 31 | 30 | oveq2d | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( 2 x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 32 | 10 5 6 | divcan2i | |- ( 2 x. ( _i / 2 ) ) = _i |
| 33 | 32 | oveq1i | |- ( ( 2 x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 34 | 2re | |- 2 e. RR |
|
| 35 | 34 | a1i | |- ( A e. RR+ -> 2 e. RR ) |
| 36 | 35 | recnd | |- ( A e. RR+ -> 2 e. CC ) |
| 37 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 38 | 10 37 | mp1i | |- ( A e. RR+ -> ( _i / 2 ) e. CC ) |
| 39 | 25 21 | subcld | |- ( A e. RR+ -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 40 | 36 38 39 | mulassd | |- ( A e. RR+ -> ( ( 2 x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( 2 x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 41 | 33 40 | eqtr3id | |- ( A e. RR+ -> ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( 2 x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 42 | 31 41 | eqtr4d | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 43 | 21 25 | negsubdi2d | |- ( A e. RR+ -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 44 | 43 | oveq2d | |- ( A e. RR+ -> ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( _i x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 45 | 42 44 | eqtr4d | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 46 | mulneg12 | |- ( ( _i e. CC /\ ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) -> ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
|
| 47 | 10 26 46 | sylancr | |- ( A e. RR+ -> ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( _i x. -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 48 | 45 47 | eqtr4d | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 49 | 48 | fveq2d | |- ( A e. RR+ -> ( Re ` ( 2 x. ( arctan ` A ) ) ) = ( Re ` ( -u _i x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 50 | remulcl | |- ( ( 2 e. RR /\ ( arctan ` A ) e. RR ) -> ( 2 x. ( arctan ` A ) ) e. RR ) |
|
| 51 | 34 3 50 | sylancr | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) e. RR ) |
| 52 | 51 | rered | |- ( A e. RR+ -> ( Re ` ( 2 x. ( arctan ` A ) ) ) = ( 2 x. ( arctan ` A ) ) ) |
| 53 | 28 49 52 | 3eqtr2rd | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 54 | rpgt0 | |- ( A e. RR+ -> 0 < A ) |
|
| 55 | 1 | rered | |- ( A e. RR+ -> ( Re ` A ) = A ) |
| 56 | 54 55 | breqtrrd | |- ( A e. RR+ -> 0 < ( Re ` A ) ) |
| 57 | atanlogsublem | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
|
| 58 | 17 56 57 | syl2anc | |- ( A e. RR+ -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 59 | 53 58 | eqeltrd | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) e. ( -u _pi (,) _pi ) ) |
| 60 | eliooord | |- ( ( 2 x. ( arctan ` A ) ) e. ( -u _pi (,) _pi ) -> ( -u _pi < ( 2 x. ( arctan ` A ) ) /\ ( 2 x. ( arctan ` A ) ) < _pi ) ) |
|
| 61 | 59 60 | syl | |- ( A e. RR+ -> ( -u _pi < ( 2 x. ( arctan ` A ) ) /\ ( 2 x. ( arctan ` A ) ) < _pi ) ) |
| 62 | 61 | simpld | |- ( A e. RR+ -> -u _pi < ( 2 x. ( arctan ` A ) ) ) |
| 63 | pire | |- _pi e. RR |
|
| 64 | 63 | renegcli | |- -u _pi e. RR |
| 65 | 64 | a1i | |- ( A e. RR+ -> -u _pi e. RR ) |
| 66 | 2pos | |- 0 < 2 |
|
| 67 | 66 | a1i | |- ( A e. RR+ -> 0 < 2 ) |
| 68 | ltdivmul | |- ( ( -u _pi e. RR /\ ( arctan ` A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( -u _pi / 2 ) < ( arctan ` A ) <-> -u _pi < ( 2 x. ( arctan ` A ) ) ) ) |
|
| 69 | 65 3 35 67 68 | syl112anc | |- ( A e. RR+ -> ( ( -u _pi / 2 ) < ( arctan ` A ) <-> -u _pi < ( 2 x. ( arctan ` A ) ) ) ) |
| 70 | 62 69 | mpbird | |- ( A e. RR+ -> ( -u _pi / 2 ) < ( arctan ` A ) ) |
| 71 | 8 70 | eqbrtrid | |- ( A e. RR+ -> -u ( _pi / 2 ) < ( arctan ` A ) ) |
| 72 | 61 | simprd | |- ( A e. RR+ -> ( 2 x. ( arctan ` A ) ) < _pi ) |
| 73 | 63 | a1i | |- ( A e. RR+ -> _pi e. RR ) |
| 74 | ltmuldiv2 | |- ( ( ( arctan ` A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. ( arctan ` A ) ) < _pi <-> ( arctan ` A ) < ( _pi / 2 ) ) ) |
|
| 75 | 3 73 35 67 74 | syl112anc | |- ( A e. RR+ -> ( ( 2 x. ( arctan ` A ) ) < _pi <-> ( arctan ` A ) < ( _pi / 2 ) ) ) |
| 76 | 72 75 | mpbid | |- ( A e. RR+ -> ( arctan ` A ) < ( _pi / 2 ) ) |
| 77 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 78 | 77 | renegcli | |- -u ( _pi / 2 ) e. RR |
| 79 | 78 | rexri | |- -u ( _pi / 2 ) e. RR* |
| 80 | 77 | rexri | |- ( _pi / 2 ) e. RR* |
| 81 | elioo2 | |- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( arctan ` A ) e. RR /\ -u ( _pi / 2 ) < ( arctan ` A ) /\ ( arctan ` A ) < ( _pi / 2 ) ) ) ) |
|
| 82 | 79 80 81 | mp2an | |- ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( arctan ` A ) e. RR /\ -u ( _pi / 2 ) < ( arctan ` A ) /\ ( arctan ` A ) < ( _pi / 2 ) ) ) |
| 83 | 3 71 76 82 | syl3anbrc | |- ( A e. RR+ -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |