This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is bounded by _pi / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanbnd | |- ( A e. RR -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atanre | |- ( A e. RR -> A e. dom arctan ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ A < 0 ) -> A e. dom arctan ) |
| 3 | atanneg | |- ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |
| 5 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 6 | 5 | adantr | |- ( ( A e. RR /\ A < 0 ) -> -u A e. RR ) |
| 7 | lt0neg1 | |- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
|
| 8 | 7 | biimpa | |- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
| 9 | 6 8 | elrpd | |- ( ( A e. RR /\ A < 0 ) -> -u A e. RR+ ) |
| 10 | atanbndlem | |- ( -u A e. RR+ -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 12 | 4 11 | eqeltrrd | |- ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 13 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 14 | 13 | recni | |- ( _pi / 2 ) e. CC |
| 15 | 14 | negnegi | |- -u -u ( _pi / 2 ) = ( _pi / 2 ) |
| 16 | 15 | oveq2i | |- ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) = ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 17 | 12 16 | eleqtrrdi | |- ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) |
| 18 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 19 | atanrecl | |- ( A e. RR -> ( arctan ` A ) e. RR ) |
|
| 20 | 19 | adantr | |- ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. RR ) |
| 21 | iooneg | |- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ ( arctan ` A ) e. RR ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
|
| 22 | 18 13 20 21 | mp3an12i | |- ( ( A e. RR /\ A < 0 ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
| 23 | 17 22 | mpbird | |- ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 24 | simpr | |- ( ( A e. RR /\ A = 0 ) -> A = 0 ) |
|
| 25 | 24 | fveq2d | |- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = ( arctan ` 0 ) ) |
| 26 | atan0 | |- ( arctan ` 0 ) = 0 |
|
| 27 | 25 26 | eqtrdi | |- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = 0 ) |
| 28 | 0re | |- 0 e. RR |
|
| 29 | pirp | |- _pi e. RR+ |
|
| 30 | rphalfcl | |- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
|
| 31 | rpgt0 | |- ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) |
|
| 32 | 29 30 31 | mp2b | |- 0 < ( _pi / 2 ) |
| 33 | lt0neg2 | |- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
|
| 34 | 13 33 | ax-mp | |- ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) |
| 35 | 32 34 | mpbi | |- -u ( _pi / 2 ) < 0 |
| 36 | 18 | rexri | |- -u ( _pi / 2 ) e. RR* |
| 37 | 13 | rexri | |- ( _pi / 2 ) e. RR* |
| 38 | elioo2 | |- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) ) ) |
|
| 39 | 36 37 38 | mp2an | |- ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) ) |
| 40 | 28 35 32 39 | mpbir3an | |- 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 41 | 27 40 | eqeltrdi | |- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 42 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 43 | atanbndlem | |- ( A e. RR+ -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
|
| 44 | 42 43 | sylbir | |- ( ( A e. RR /\ 0 < A ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 45 | lttri4 | |- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
|
| 46 | 28 45 | mpan2 | |- ( A e. RR -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
| 47 | 23 41 44 46 | mpjao3dan | |- ( A e. RR -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |