This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanre | |- ( A e. RR -> A e. dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | neg1rr | |- -u 1 e. RR |
|
| 3 | 2 | a1i | |- ( A e. RR -> -u 1 e. RR ) |
| 4 | 0red | |- ( A e. RR -> 0 e. RR ) |
|
| 5 | resqcl | |- ( A e. RR -> ( A ^ 2 ) e. RR ) |
|
| 6 | neg1lt0 | |- -u 1 < 0 |
|
| 7 | 6 | a1i | |- ( A e. RR -> -u 1 < 0 ) |
| 8 | sqge0 | |- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
|
| 9 | 3 4 5 7 8 | ltletrd | |- ( A e. RR -> -u 1 < ( A ^ 2 ) ) |
| 10 | 3 9 | gtned | |- ( A e. RR -> ( A ^ 2 ) =/= -u 1 ) |
| 11 | atandm3 | |- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
|
| 12 | 1 10 11 | sylanbrc | |- ( A e. RR -> A e. dom arctan ) |