This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is bounded by _pi / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanbnd | ⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atanre | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 ∈ dom arctan ) |
| 3 | atanneg | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) |
| 5 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
| 7 | lt0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) | |
| 8 | 7 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 9 | 6 8 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ+ ) |
| 10 | atanbndlem | ⊢ ( - 𝐴 ∈ ℝ+ → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ - 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 12 | 4 11 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 13 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 14 | 13 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 15 | 14 | negnegi | ⊢ - - ( π / 2 ) = ( π / 2 ) |
| 16 | 15 | oveq2i | ⊢ ( - ( π / 2 ) (,) - - ( π / 2 ) ) = ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 17 | 12 16 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) |
| 18 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 19 | atanrecl | ⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| 21 | iooneg | ⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ ( arctan ‘ 𝐴 ) ∈ ℝ ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) ) | |
| 22 | 18 13 20 21 | mp3an12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ - ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) - - ( π / 2 ) ) ) ) |
| 23 | 17 22 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 24 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = ( arctan ‘ 0 ) ) |
| 26 | atan0 | ⊢ ( arctan ‘ 0 ) = 0 | |
| 27 | 25 26 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = 0 ) |
| 28 | 0re | ⊢ 0 ∈ ℝ | |
| 29 | pirp | ⊢ π ∈ ℝ+ | |
| 30 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 31 | rpgt0 | ⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) | |
| 32 | 29 30 31 | mp2b | ⊢ 0 < ( π / 2 ) |
| 33 | lt0neg2 | ⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) | |
| 34 | 13 33 | ax-mp | ⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
| 35 | 32 34 | mpbi | ⊢ - ( π / 2 ) < 0 |
| 36 | 18 | rexri | ⊢ - ( π / 2 ) ∈ ℝ* |
| 37 | 13 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 38 | elioo2 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) ) ) | |
| 39 | 36 37 38 | mp2an | ⊢ ( 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( 0 ∈ ℝ ∧ - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) ) |
| 40 | 28 35 32 39 | mpbir3an | ⊢ 0 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 41 | 27 40 | eqeltrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 42 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 43 | atanbndlem | ⊢ ( 𝐴 ∈ ℝ+ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 44 | 42 43 | sylbir | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 45 | lttri4 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) | |
| 46 | 28 45 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
| 47 | 23 41 44 46 | mpjao3dan | ⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |