This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent of zero is zero. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atan0 | |- ( arctan ` 0 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg0 | |- -u 0 = 0 |
|
| 2 | 1 | fveq2i | |- ( arctan ` -u 0 ) = ( arctan ` 0 ) |
| 3 | 0re | |- 0 e. RR |
|
| 4 | atanre | |- ( 0 e. RR -> 0 e. dom arctan ) |
|
| 5 | atanneg | |- ( 0 e. dom arctan -> ( arctan ` -u 0 ) = -u ( arctan ` 0 ) ) |
|
| 6 | 3 4 5 | mp2b | |- ( arctan ` -u 0 ) = -u ( arctan ` 0 ) |
| 7 | 2 6 | eqtr3i | |- ( arctan ` 0 ) = -u ( arctan ` 0 ) |
| 8 | atancl | |- ( 0 e. dom arctan -> ( arctan ` 0 ) e. CC ) |
|
| 9 | 3 4 8 | mp2b | |- ( arctan ` 0 ) e. CC |
| 10 | 9 | eqnegi | |- ( ( arctan ` 0 ) = -u ( arctan ` 0 ) <-> ( arctan ` 0 ) = 0 ) |
| 11 | 7 10 | mpbi | |- ( arctan ` 0 ) = 0 |