This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubassa2.a | |- A = ( algSc ` W ) |
|
| issubassa2.l | |- L = ( LSubSp ` W ) |
||
| Assertion | issubassa2 | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) -> ( S e. L <-> ran A C_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubassa2.a | |- A = ( algSc ` W ) |
|
| 2 | issubassa2.l | |- L = ( LSubSp ` W ) |
|
| 3 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 4 | eqid | |- ( LSpan ` W ) = ( LSpan ` W ) |
|
| 5 | 1 3 4 | rnascl | |- ( W e. AssAlg -> ran A = ( ( LSpan ` W ) ` { ( 1r ` W ) } ) ) |
| 6 | 5 | ad2antrr | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ran A = ( ( LSpan ` W ) ` { ( 1r ` W ) } ) ) |
| 7 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> W e. LMod ) |
| 9 | simpr | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> S e. L ) |
|
| 10 | 3 | subrg1cl | |- ( S e. ( SubRing ` W ) -> ( 1r ` W ) e. S ) |
| 11 | 10 | ad2antlr | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ( 1r ` W ) e. S ) |
| 12 | 2 4 8 9 11 | ellspsn5 | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ( ( LSpan ` W ) ` { ( 1r ` W ) } ) C_ S ) |
| 13 | 6 12 | eqsstrd | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ran A C_ S ) |
| 14 | subrgsubg | |- ( S e. ( SubRing ` W ) -> S e. ( SubGrp ` W ) ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S e. ( SubGrp ` W ) ) |
| 16 | simplll | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> W e. AssAlg ) |
|
| 17 | simprl | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
|
| 18 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 19 | 18 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 20 | 19 | ad2antlr | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S C_ ( Base ` W ) ) |
| 21 | 20 | sselda | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ y e. S ) -> y e. ( Base ` W ) ) |
| 22 | 21 | adantrl | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> y e. ( Base ` W ) ) |
| 23 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 24 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 25 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 26 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 27 | 1 23 24 18 25 26 | asclmul1 | |- ( ( W e. AssAlg /\ x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) -> ( ( A ` x ) ( .r ` W ) y ) = ( x ( .s ` W ) y ) ) |
| 28 | 16 17 22 27 | syl3anc | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( ( A ` x ) ( .r ` W ) y ) = ( x ( .s ` W ) y ) ) |
| 29 | simpllr | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> S e. ( SubRing ` W ) ) |
|
| 30 | simplr | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ran A C_ S ) |
|
| 31 | 1 23 24 | asclfn | |- A Fn ( Base ` ( Scalar ` W ) ) |
| 32 | 31 | a1i | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> A Fn ( Base ` ( Scalar ` W ) ) ) |
| 33 | fnfvelrn | |- ( ( A Fn ( Base ` ( Scalar ` W ) ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. ran A ) |
|
| 34 | 32 33 | sylan | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. ran A ) |
| 35 | 30 34 | sseldd | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. S ) |
| 36 | 35 | adantrr | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( A ` x ) e. S ) |
| 37 | simprr | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> y e. S ) |
|
| 38 | 25 | subrgmcl | |- ( ( S e. ( SubRing ` W ) /\ ( A ` x ) e. S /\ y e. S ) -> ( ( A ` x ) ( .r ` W ) y ) e. S ) |
| 39 | 29 36 37 38 | syl3anc | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( ( A ` x ) ( .r ` W ) y ) e. S ) |
| 40 | 28 39 | eqeltrrd | |- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( x ( .s ` W ) y ) e. S ) |
| 41 | 40 | ralrimivva | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) |
| 42 | 23 24 18 26 2 | islss4 | |- ( W e. LMod -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) |
| 43 | 7 42 | syl | |- ( W e. AssAlg -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) |
| 44 | 43 | ad2antrr | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) |
| 45 | 15 41 44 | mpbir2and | |- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S e. L ) |
| 46 | 13 45 | impbida | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) -> ( S e. L <-> ran A C_ S ) ) |