This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Fan Zheng, 6-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcval | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | 1 | mrcfval | |- ( C e. ( Moore ` X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |
| 3 | 2 | adantr | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |
| 4 | sseq1 | |- ( x = U -> ( x C_ s <-> U C_ s ) ) |
|
| 5 | 4 | rabbidv | |- ( x = U -> { s e. C | x C_ s } = { s e. C | U C_ s } ) |
| 6 | 5 | inteqd | |- ( x = U -> |^| { s e. C | x C_ s } = |^| { s e. C | U C_ s } ) |
| 7 | 6 | adantl | |- ( ( ( C e. ( Moore ` X ) /\ U C_ X ) /\ x = U ) -> |^| { s e. C | x C_ s } = |^| { s e. C | U C_ s } ) |
| 8 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 9 | elpw2g | |- ( X e. C -> ( U e. ~P X <-> U C_ X ) ) |
|
| 10 | 8 9 | syl | |- ( C e. ( Moore ` X ) -> ( U e. ~P X <-> U C_ X ) ) |
| 11 | 10 | biimpar | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U e. ~P X ) |
| 12 | sseq2 | |- ( s = X -> ( U C_ s <-> U C_ X ) ) |
|
| 13 | 8 | adantr | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> X e. C ) |
| 14 | simpr | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ X ) |
|
| 15 | 12 13 14 | elrabd | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> X e. { s e. C | U C_ s } ) |
| 16 | 15 | ne0d | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> { s e. C | U C_ s } =/= (/) ) |
| 17 | intex | |- ( { s e. C | U C_ s } =/= (/) <-> |^| { s e. C | U C_ s } e. _V ) |
|
| 18 | 16 17 | sylib | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> |^| { s e. C | U C_ s } e. _V ) |
| 19 | 3 7 11 18 | fvmptd | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |