This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for assamulgscm (induction base). (Contributed by AV, 26-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assamulgscm.v | |- V = ( Base ` W ) |
|
| assamulgscm.f | |- F = ( Scalar ` W ) |
||
| assamulgscm.b | |- B = ( Base ` F ) |
||
| assamulgscm.s | |- .x. = ( .s ` W ) |
||
| assamulgscm.g | |- G = ( mulGrp ` F ) |
||
| assamulgscm.p | |- .^ = ( .g ` G ) |
||
| assamulgscm.h | |- H = ( mulGrp ` W ) |
||
| assamulgscm.e | |- E = ( .g ` H ) |
||
| Assertion | assamulgscmlem1 | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assamulgscm.v | |- V = ( Base ` W ) |
|
| 2 | assamulgscm.f | |- F = ( Scalar ` W ) |
|
| 3 | assamulgscm.b | |- B = ( Base ` F ) |
|
| 4 | assamulgscm.s | |- .x. = ( .s ` W ) |
|
| 5 | assamulgscm.g | |- G = ( mulGrp ` F ) |
|
| 6 | assamulgscm.p | |- .^ = ( .g ` G ) |
|
| 7 | assamulgscm.h | |- H = ( mulGrp ` W ) |
|
| 8 | assamulgscm.e | |- E = ( .g ` H ) |
|
| 9 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 10 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 11 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 12 | 1 11 | ringidcl | |- ( W e. Ring -> ( 1r ` W ) e. V ) |
| 13 | 10 12 | syl | |- ( W e. AssAlg -> ( 1r ` W ) e. V ) |
| 14 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 15 | 1 2 4 14 | lmodvs1 | |- ( ( W e. LMod /\ ( 1r ` W ) e. V ) -> ( ( 1r ` F ) .x. ( 1r ` W ) ) = ( 1r ` W ) ) |
| 16 | 15 | eqcomd | |- ( ( W e. LMod /\ ( 1r ` W ) e. V ) -> ( 1r ` W ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
| 17 | 9 13 16 | syl2anc | |- ( W e. AssAlg -> ( 1r ` W ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
| 18 | 17 | adantl | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 1r ` W ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
| 19 | 9 | adantl | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> W e. LMod ) |
| 20 | simpll | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> A e. B ) |
|
| 21 | simplr | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> X e. V ) |
|
| 22 | 1 2 4 3 | lmodvscl | |- ( ( W e. LMod /\ A e. B /\ X e. V ) -> ( A .x. X ) e. V ) |
| 23 | 19 20 21 22 | syl3anc | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( A .x. X ) e. V ) |
| 24 | 7 1 | mgpbas | |- V = ( Base ` H ) |
| 25 | 7 11 | ringidval | |- ( 1r ` W ) = ( 0g ` H ) |
| 26 | 24 25 8 | mulg0 | |- ( ( A .x. X ) e. V -> ( 0 E ( A .x. X ) ) = ( 1r ` W ) ) |
| 27 | 23 26 | syl | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( 1r ` W ) ) |
| 28 | 5 3 | mgpbas | |- B = ( Base ` G ) |
| 29 | 5 14 | ringidval | |- ( 1r ` F ) = ( 0g ` G ) |
| 30 | 28 29 6 | mulg0 | |- ( A e. B -> ( 0 .^ A ) = ( 1r ` F ) ) |
| 31 | 20 30 | syl | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 .^ A ) = ( 1r ` F ) ) |
| 32 | 24 25 8 | mulg0 | |- ( X e. V -> ( 0 E X ) = ( 1r ` W ) ) |
| 33 | 21 32 | syl | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E X ) = ( 1r ` W ) ) |
| 34 | 31 33 | oveq12d | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( 0 .^ A ) .x. ( 0 E X ) ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
| 35 | 18 27 34 | 3eqtr4d | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) |