This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | |- A = ( AlgSpan ` W ) |
|
| aspval.v | |- V = ( Base ` W ) |
||
| aspval.l | |- L = ( LSubSp ` W ) |
||
| Assertion | aspval | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | |- A = ( AlgSpan ` W ) |
|
| 2 | aspval.v | |- V = ( Base ` W ) |
|
| 3 | aspval.l | |- L = ( LSubSp ` W ) |
|
| 4 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 5 | 4 2 | eqtr4di | |- ( w = W -> ( Base ` w ) = V ) |
| 6 | 5 | pweqd | |- ( w = W -> ~P ( Base ` w ) = ~P V ) |
| 7 | fveq2 | |- ( w = W -> ( SubRing ` w ) = ( SubRing ` W ) ) |
|
| 8 | fveq2 | |- ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) |
|
| 9 | 8 3 | eqtr4di | |- ( w = W -> ( LSubSp ` w ) = L ) |
| 10 | 7 9 | ineq12d | |- ( w = W -> ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) = ( ( SubRing ` W ) i^i L ) ) |
| 11 | 10 | rabeqdv | |- ( w = W -> { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } = { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) |
| 12 | 11 | inteqd | |- ( w = W -> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } = |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) |
| 13 | 6 12 | mpteq12dv | |- ( w = W -> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) |
| 14 | df-asp | |- AlgSpan = ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |
|
| 15 | 2 | fvexi | |- V e. _V |
| 16 | 15 | pwex | |- ~P V e. _V |
| 17 | 16 | mptex | |- ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) e. _V |
| 18 | 13 14 17 | fvmpt | |- ( W e. AssAlg -> ( AlgSpan ` W ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) |
| 19 | 1 18 | eqtrid | |- ( W e. AssAlg -> A = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) |
| 20 | 19 | fveq1d | |- ( W e. AssAlg -> ( A ` S ) = ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) ) |
| 21 | 20 | adantr | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) ) |
| 22 | eqid | |- ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) |
|
| 23 | sseq1 | |- ( s = S -> ( s C_ t <-> S C_ t ) ) |
|
| 24 | 23 | rabbidv | |- ( s = S -> { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } = { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 25 | 24 | inteqd | |- ( s = S -> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 26 | simpr | |- ( ( W e. AssAlg /\ S C_ V ) -> S C_ V ) |
|
| 27 | 15 | elpw2 | |- ( S e. ~P V <-> S C_ V ) |
| 28 | 26 27 | sylibr | |- ( ( W e. AssAlg /\ S C_ V ) -> S e. ~P V ) |
| 29 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 30 | 2 | subrgid | |- ( W e. Ring -> V e. ( SubRing ` W ) ) |
| 31 | 29 30 | syl | |- ( W e. AssAlg -> V e. ( SubRing ` W ) ) |
| 32 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 33 | 2 3 | lss1 | |- ( W e. LMod -> V e. L ) |
| 34 | 32 33 | syl | |- ( W e. AssAlg -> V e. L ) |
| 35 | 31 34 | elind | |- ( W e. AssAlg -> V e. ( ( SubRing ` W ) i^i L ) ) |
| 36 | sseq2 | |- ( t = V -> ( S C_ t <-> S C_ V ) ) |
|
| 37 | 36 | rspcev | |- ( ( V e. ( ( SubRing ` W ) i^i L ) /\ S C_ V ) -> E. t e. ( ( SubRing ` W ) i^i L ) S C_ t ) |
| 38 | 35 37 | sylan | |- ( ( W e. AssAlg /\ S C_ V ) -> E. t e. ( ( SubRing ` W ) i^i L ) S C_ t ) |
| 39 | intexrab | |- ( E. t e. ( ( SubRing ` W ) i^i L ) S C_ t <-> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
|
| 40 | 38 39 | sylib | |- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
| 41 | 22 25 28 40 | fvmptd3 | |- ( ( W e. AssAlg /\ S C_ V ) -> ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 42 | 21 41 | eqtrd | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |