This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of binom2sub where B = 1 . (Contributed by AV, 2-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom2sub1 | |- ( A e. CC -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | |- ( A e. CC -> 1 e. CC ) |
|
| 2 | binom2sub | |- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) ) |
|
| 3 | 1 2 | mpdan | |- ( A e. CC -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) ) |
| 4 | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
| 5 | 4 | oveq2d | |- ( A e. CC -> ( 2 x. ( A x. 1 ) ) = ( 2 x. A ) ) |
| 6 | 5 | oveq2d | |- ( A e. CC -> ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) = ( ( A ^ 2 ) - ( 2 x. A ) ) ) |
| 7 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 8 | 7 | a1i | |- ( A e. CC -> ( 1 ^ 2 ) = 1 ) |
| 9 | 6 8 | oveq12d | |- ( A e. CC -> ( ( ( A ^ 2 ) - ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |
| 10 | 3 9 | eqtrd | |- ( A e. CC -> ( ( A - 1 ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. A ) ) + 1 ) ) |