This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephordi | |- ( B e. On -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( x = (/) -> ( A e. x <-> A e. (/) ) ) |
|
| 2 | fveq2 | |- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
|
| 3 | 2 | breq2d | |- ( x = (/) -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` (/) ) ) ) |
| 4 | 1 3 | imbi12d | |- ( x = (/) -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. (/) -> ( aleph ` A ) ~< ( aleph ` (/) ) ) ) ) |
| 5 | eleq2 | |- ( x = y -> ( A e. x <-> A e. y ) ) |
|
| 6 | fveq2 | |- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
|
| 7 | 6 | breq2d | |- ( x = y -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` y ) ) ) |
| 8 | 5 7 | imbi12d | |- ( x = y -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) ) ) |
| 9 | eleq2 | |- ( x = suc y -> ( A e. x <-> A e. suc y ) ) |
|
| 10 | fveq2 | |- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
|
| 11 | 10 | breq2d | |- ( x = suc y -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
| 12 | 9 11 | imbi12d | |- ( x = suc y -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. suc y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 13 | eleq2 | |- ( x = B -> ( A e. x <-> A e. B ) ) |
|
| 14 | fveq2 | |- ( x = B -> ( aleph ` x ) = ( aleph ` B ) ) |
|
| 15 | 14 | breq2d | |- ( x = B -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
| 16 | 13 15 | imbi12d | |- ( x = B -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) ) |
| 17 | noel | |- -. A e. (/) |
|
| 18 | 17 | pm2.21i | |- ( A e. (/) -> ( aleph ` A ) ~< ( aleph ` (/) ) ) |
| 19 | vex | |- y e. _V |
|
| 20 | 19 | elsuc2 | |- ( A e. suc y <-> ( A e. y \/ A = y ) ) |
| 21 | alephordilem1 | |- ( y e. On -> ( aleph ` y ) ~< ( aleph ` suc y ) ) |
|
| 22 | sdomtr | |- ( ( ( aleph ` A ) ~< ( aleph ` y ) /\ ( aleph ` y ) ~< ( aleph ` suc y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) |
|
| 23 | 21 22 | sylan2 | |- ( ( ( aleph ` A ) ~< ( aleph ` y ) /\ y e. On ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) |
| 24 | 23 | expcom | |- ( y e. On -> ( ( aleph ` A ) ~< ( aleph ` y ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
| 25 | 24 | imim2d | |- ( y e. On -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 26 | 25 | com23 | |- ( y e. On -> ( A e. y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 27 | fveq2 | |- ( A = y -> ( aleph ` A ) = ( aleph ` y ) ) |
|
| 28 | 27 | breq1d | |- ( A = y -> ( ( aleph ` A ) ~< ( aleph ` suc y ) <-> ( aleph ` y ) ~< ( aleph ` suc y ) ) ) |
| 29 | 21 28 | imbitrrid | |- ( A = y -> ( y e. On -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
| 30 | 29 | a1d | |- ( A = y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( y e. On -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 31 | 30 | com3r | |- ( y e. On -> ( A = y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 32 | 26 31 | jaod | |- ( y e. On -> ( ( A e. y \/ A = y ) -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 33 | 20 32 | biimtrid | |- ( y e. On -> ( A e. suc y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 34 | 33 | com23 | |- ( y e. On -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. suc y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 35 | fvexd | |- ( Lim x -> ( aleph ` x ) e. _V ) |
|
| 36 | fveq2 | |- ( w = A -> ( aleph ` w ) = ( aleph ` A ) ) |
|
| 37 | 36 | ssiun2s | |- ( A e. x -> ( aleph ` A ) C_ U_ w e. x ( aleph ` w ) ) |
| 38 | vex | |- x e. _V |
|
| 39 | alephlim | |- ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ w e. x ( aleph ` w ) ) |
|
| 40 | 38 39 | mpan | |- ( Lim x -> ( aleph ` x ) = U_ w e. x ( aleph ` w ) ) |
| 41 | 40 | sseq2d | |- ( Lim x -> ( ( aleph ` A ) C_ ( aleph ` x ) <-> ( aleph ` A ) C_ U_ w e. x ( aleph ` w ) ) ) |
| 42 | 37 41 | imbitrrid | |- ( Lim x -> ( A e. x -> ( aleph ` A ) C_ ( aleph ` x ) ) ) |
| 43 | ssdomg | |- ( ( aleph ` x ) e. _V -> ( ( aleph ` A ) C_ ( aleph ` x ) -> ( aleph ` A ) ~<_ ( aleph ` x ) ) ) |
|
| 44 | 35 42 43 | sylsyld | |- ( Lim x -> ( A e. x -> ( aleph ` A ) ~<_ ( aleph ` x ) ) ) |
| 45 | limsuc | |- ( Lim x -> ( A e. x <-> suc A e. x ) ) |
|
| 46 | fveq2 | |- ( w = suc A -> ( aleph ` w ) = ( aleph ` suc A ) ) |
|
| 47 | 46 | ssiun2s | |- ( suc A e. x -> ( aleph ` suc A ) C_ U_ w e. x ( aleph ` w ) ) |
| 48 | 40 | sseq2d | |- ( Lim x -> ( ( aleph ` suc A ) C_ ( aleph ` x ) <-> ( aleph ` suc A ) C_ U_ w e. x ( aleph ` w ) ) ) |
| 49 | 47 48 | imbitrrid | |- ( Lim x -> ( suc A e. x -> ( aleph ` suc A ) C_ ( aleph ` x ) ) ) |
| 50 | ssdomg | |- ( ( aleph ` x ) e. _V -> ( ( aleph ` suc A ) C_ ( aleph ` x ) -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
|
| 51 | 35 49 50 | sylsyld | |- ( Lim x -> ( suc A e. x -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
| 52 | 45 51 | sylbid | |- ( Lim x -> ( A e. x -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
| 53 | 52 | imp | |- ( ( Lim x /\ A e. x ) -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) |
| 54 | domnsym | |- ( ( aleph ` suc A ) ~<_ ( aleph ` x ) -> -. ( aleph ` x ) ~< ( aleph ` suc A ) ) |
|
| 55 | 53 54 | syl | |- ( ( Lim x /\ A e. x ) -> -. ( aleph ` x ) ~< ( aleph ` suc A ) ) |
| 56 | limelon | |- ( ( x e. _V /\ Lim x ) -> x e. On ) |
|
| 57 | 38 56 | mpan | |- ( Lim x -> x e. On ) |
| 58 | onelon | |- ( ( x e. On /\ A e. x ) -> A e. On ) |
|
| 59 | 57 58 | sylan | |- ( ( Lim x /\ A e. x ) -> A e. On ) |
| 60 | ensym | |- ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( aleph ` x ) ~~ ( aleph ` A ) ) |
|
| 61 | alephordilem1 | |- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
|
| 62 | ensdomtr | |- ( ( ( aleph ` x ) ~~ ( aleph ` A ) /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) |
|
| 63 | 62 | ex | |- ( ( aleph ` x ) ~~ ( aleph ` A ) -> ( ( aleph ` A ) ~< ( aleph ` suc A ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
| 64 | 60 61 63 | syl2im | |- ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( A e. On -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
| 65 | 59 64 | syl5com | |- ( ( Lim x /\ A e. x ) -> ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
| 66 | 55 65 | mtod | |- ( ( Lim x /\ A e. x ) -> -. ( aleph ` A ) ~~ ( aleph ` x ) ) |
| 67 | 66 | ex | |- ( Lim x -> ( A e. x -> -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) |
| 68 | 44 67 | jcad | |- ( Lim x -> ( A e. x -> ( ( aleph ` A ) ~<_ ( aleph ` x ) /\ -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) ) |
| 69 | brsdom | |- ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( ( aleph ` A ) ~<_ ( aleph ` x ) /\ -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) |
|
| 70 | 68 69 | imbitrrdi | |- ( Lim x -> ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) ) |
| 71 | 70 | a1d | |- ( Lim x -> ( A. y e. x ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) ) ) |
| 72 | 4 8 12 16 18 34 71 | tfinds | |- ( B e. On -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |