This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of natural numbers is a cardinal number. Theorem 18.11 of Monk1 p. 133. (Contributed by NM, 28-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardom | |- ( card ` _om ) = _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon | |- _om e. On |
|
| 2 | oncardid | |- ( _om e. On -> ( card ` _om ) ~~ _om ) |
|
| 3 | 1 2 | ax-mp | |- ( card ` _om ) ~~ _om |
| 4 | nnsdom | |- ( ( card ` _om ) e. _om -> ( card ` _om ) ~< _om ) |
|
| 5 | sdomnen | |- ( ( card ` _om ) ~< _om -> -. ( card ` _om ) ~~ _om ) |
|
| 6 | 4 5 | syl | |- ( ( card ` _om ) e. _om -> -. ( card ` _om ) ~~ _om ) |
| 7 | 3 6 | mt2 | |- -. ( card ` _om ) e. _om |
| 8 | cardonle | |- ( _om e. On -> ( card ` _om ) C_ _om ) |
|
| 9 | 1 8 | ax-mp | |- ( card ` _om ) C_ _om |
| 10 | cardon | |- ( card ` _om ) e. On |
|
| 11 | 10 1 | onsseli | |- ( ( card ` _om ) C_ _om <-> ( ( card ` _om ) e. _om \/ ( card ` _om ) = _om ) ) |
| 12 | 9 11 | mpbi | |- ( ( card ` _om ) e. _om \/ ( card ` _om ) = _om ) |
| 13 | 7 12 | mtpor | |- ( card ` _om ) = _om |