This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneqmini | |- ( B C_ On -> ( ( A e. B /\ A. x e. A -. x e. B ) -> A = |^| B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | |- ( A C_ |^| B <-> A. x e. B A C_ x ) |
|
| 2 | ssel | |- ( B C_ On -> ( A e. B -> A e. On ) ) |
|
| 3 | ssel | |- ( B C_ On -> ( x e. B -> x e. On ) ) |
|
| 4 | 2 3 | anim12d | |- ( B C_ On -> ( ( A e. B /\ x e. B ) -> ( A e. On /\ x e. On ) ) ) |
| 5 | ontri1 | |- ( ( A e. On /\ x e. On ) -> ( A C_ x <-> -. x e. A ) ) |
|
| 6 | 4 5 | syl6 | |- ( B C_ On -> ( ( A e. B /\ x e. B ) -> ( A C_ x <-> -. x e. A ) ) ) |
| 7 | 6 | expdimp | |- ( ( B C_ On /\ A e. B ) -> ( x e. B -> ( A C_ x <-> -. x e. A ) ) ) |
| 8 | 7 | pm5.74d | |- ( ( B C_ On /\ A e. B ) -> ( ( x e. B -> A C_ x ) <-> ( x e. B -> -. x e. A ) ) ) |
| 9 | con2b | |- ( ( x e. B -> -. x e. A ) <-> ( x e. A -> -. x e. B ) ) |
|
| 10 | 8 9 | bitrdi | |- ( ( B C_ On /\ A e. B ) -> ( ( x e. B -> A C_ x ) <-> ( x e. A -> -. x e. B ) ) ) |
| 11 | 10 | ralbidv2 | |- ( ( B C_ On /\ A e. B ) -> ( A. x e. B A C_ x <-> A. x e. A -. x e. B ) ) |
| 12 | 1 11 | bitrid | |- ( ( B C_ On /\ A e. B ) -> ( A C_ |^| B <-> A. x e. A -. x e. B ) ) |
| 13 | 12 | biimprd | |- ( ( B C_ On /\ A e. B ) -> ( A. x e. A -. x e. B -> A C_ |^| B ) ) |
| 14 | 13 | expimpd | |- ( B C_ On -> ( ( A e. B /\ A. x e. A -. x e. B ) -> A C_ |^| B ) ) |
| 15 | intss1 | |- ( A e. B -> |^| B C_ A ) |
|
| 16 | 15 | a1i | |- ( B C_ On -> ( A e. B -> |^| B C_ A ) ) |
| 17 | 16 | adantrd | |- ( B C_ On -> ( ( A e. B /\ A. x e. A -. x e. B ) -> |^| B C_ A ) ) |
| 18 | 14 17 | jcad | |- ( B C_ On -> ( ( A e. B /\ A. x e. A -. x e. B ) -> ( A C_ |^| B /\ |^| B C_ A ) ) ) |
| 19 | eqss | |- ( A = |^| B <-> ( A C_ |^| B /\ |^| B C_ A ) ) |
|
| 20 | 18 19 | imbitrrdi | |- ( B C_ On -> ( ( A e. B /\ A. x e. A -. x e. B ) -> A = |^| B ) ) |