This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephord | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordi | |- ( B e. On -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. On /\ B e. On ) -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
| 3 | brsdom | |- ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ -. ( aleph ` A ) ~~ ( aleph ` B ) ) ) |
|
| 4 | alephon | |- ( aleph ` A ) e. On |
|
| 5 | alephon | |- ( aleph ` B ) e. On |
|
| 6 | domtriord | |- ( ( ( aleph ` A ) e. On /\ ( aleph ` B ) e. On ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( aleph ` A ) ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( ( aleph ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( aleph ` A ) ) |
| 8 | alephordi | |- ( A e. On -> ( B e. A -> ( aleph ` B ) ~< ( aleph ` A ) ) ) |
|
| 9 | 8 | con3d | |- ( A e. On -> ( -. ( aleph ` B ) ~< ( aleph ` A ) -> -. B e. A ) ) |
| 10 | 7 9 | biimtrid | |- ( A e. On -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> -. B e. A ) ) |
| 11 | 10 | adantr | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> -. B e. A ) ) |
| 12 | ontri1 | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 13 | 11 12 | sylibrd | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> A C_ B ) ) |
| 14 | fveq2 | |- ( A = B -> ( aleph ` A ) = ( aleph ` B ) ) |
|
| 15 | eqeng | |- ( ( aleph ` A ) e. On -> ( ( aleph ` A ) = ( aleph ` B ) -> ( aleph ` A ) ~~ ( aleph ` B ) ) ) |
|
| 16 | 4 14 15 | mpsyl | |- ( A = B -> ( aleph ` A ) ~~ ( aleph ` B ) ) |
| 17 | 16 | necon3bi | |- ( -. ( aleph ` A ) ~~ ( aleph ` B ) -> A =/= B ) |
| 18 | 13 17 | anim12d1 | |- ( ( A e. On /\ B e. On ) -> ( ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ -. ( aleph ` A ) ~~ ( aleph ` B ) ) -> ( A C_ B /\ A =/= B ) ) ) |
| 19 | onelpss | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( A C_ B /\ A =/= B ) ) ) |
|
| 20 | 18 19 | sylibrd | |- ( ( A e. On /\ B e. On ) -> ( ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ -. ( aleph ` A ) ~~ ( aleph ` B ) ) -> A e. B ) ) |
| 21 | 3 20 | biimtrid | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~< ( aleph ` B ) -> A e. B ) ) |
| 22 | 2 21 | impbid | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |