This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephmul | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) X. ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 2 | fvex | |- ( aleph ` A ) e. _V |
|
| 3 | ssdomg | |- ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) |
| 5 | 1 4 | sylbi | |- ( A e. On -> _om ~<_ ( aleph ` A ) ) |
| 6 | alephon | |- ( aleph ` A ) e. On |
|
| 7 | onenon | |- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
|
| 8 | 6 7 | ax-mp | |- ( aleph ` A ) e. dom card |
| 9 | 5 8 | jctil | |- ( A e. On -> ( ( aleph ` A ) e. dom card /\ _om ~<_ ( aleph ` A ) ) ) |
| 10 | alephgeom | |- ( B e. On <-> _om C_ ( aleph ` B ) ) |
|
| 11 | fvex | |- ( aleph ` B ) e. _V |
|
| 12 | ssdomg | |- ( ( aleph ` B ) e. _V -> ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) ) |
|
| 13 | 11 12 | ax-mp | |- ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) |
| 14 | infn0 | |- ( _om ~<_ ( aleph ` B ) -> ( aleph ` B ) =/= (/) ) |
|
| 15 | 13 14 | syl | |- ( _om C_ ( aleph ` B ) -> ( aleph ` B ) =/= (/) ) |
| 16 | 10 15 | sylbi | |- ( B e. On -> ( aleph ` B ) =/= (/) ) |
| 17 | alephon | |- ( aleph ` B ) e. On |
|
| 18 | onenon | |- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
|
| 19 | 17 18 | ax-mp | |- ( aleph ` B ) e. dom card |
| 20 | 16 19 | jctil | |- ( B e. On -> ( ( aleph ` B ) e. dom card /\ ( aleph ` B ) =/= (/) ) ) |
| 21 | infxp | |- ( ( ( ( aleph ` A ) e. dom card /\ _om ~<_ ( aleph ` A ) ) /\ ( ( aleph ` B ) e. dom card /\ ( aleph ` B ) =/= (/) ) ) -> ( ( aleph ` A ) X. ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
|
| 22 | 9 20 21 | syl2an | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) X. ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |