This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of TakeutiZaring p. 95. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdju | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~~ ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unnum | |- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A u. B ) e. dom card ) |
| 3 | ssun2 | |- B C_ ( A u. B ) |
|
| 4 | ssdomg | |- ( ( A u. B ) e. dom card -> ( B C_ ( A u. B ) -> B ~<_ ( A u. B ) ) ) |
|
| 5 | 2 3 4 | mpisyl | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> B ~<_ ( A u. B ) ) |
| 6 | simp1 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> A e. dom card ) |
|
| 7 | djudom2 | |- ( ( B ~<_ ( A u. B ) /\ A e. dom card ) -> ( A |_| B ) ~<_ ( A |_| ( A u. B ) ) ) |
|
| 8 | 5 6 7 | syl2anc | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~<_ ( A |_| ( A u. B ) ) ) |
| 9 | djucomen | |- ( ( A e. dom card /\ ( A u. B ) e. dom card ) -> ( A |_| ( A u. B ) ) ~~ ( ( A u. B ) |_| A ) ) |
|
| 10 | 6 2 9 | syl2anc | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| ( A u. B ) ) ~~ ( ( A u. B ) |_| A ) ) |
| 11 | domentr | |- ( ( ( A |_| B ) ~<_ ( A |_| ( A u. B ) ) /\ ( A |_| ( A u. B ) ) ~~ ( ( A u. B ) |_| A ) ) -> ( A |_| B ) ~<_ ( ( A u. B ) |_| A ) ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~<_ ( ( A u. B ) |_| A ) ) |
| 13 | simp3 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> _om ~<_ A ) |
|
| 14 | ssun1 | |- A C_ ( A u. B ) |
|
| 15 | ssdomg | |- ( ( A u. B ) e. dom card -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
|
| 16 | 2 14 15 | mpisyl | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> A ~<_ ( A u. B ) ) |
| 17 | domtr | |- ( ( _om ~<_ A /\ A ~<_ ( A u. B ) ) -> _om ~<_ ( A u. B ) ) |
|
| 18 | 13 16 17 | syl2anc | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> _om ~<_ ( A u. B ) ) |
| 19 | infdjuabs | |- ( ( ( A u. B ) e. dom card /\ _om ~<_ ( A u. B ) /\ A ~<_ ( A u. B ) ) -> ( ( A u. B ) |_| A ) ~~ ( A u. B ) ) |
|
| 20 | 2 18 16 19 | syl3anc | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A u. B ) |_| A ) ~~ ( A u. B ) ) |
| 21 | domentr | |- ( ( ( A |_| B ) ~<_ ( ( A u. B ) |_| A ) /\ ( ( A u. B ) |_| A ) ~~ ( A u. B ) ) -> ( A |_| B ) ~<_ ( A u. B ) ) |
|
| 22 | 12 20 21 | syl2anc | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~<_ ( A u. B ) ) |
| 23 | undjudom | |- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
|
| 24 | 23 | 3adant3 | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
| 25 | sbth | |- ( ( ( A |_| B ) ~<_ ( A u. B ) /\ ( A u. B ) ~<_ ( A |_| B ) ) -> ( A |_| B ) ~~ ( A u. B ) ) |
|
| 26 | 22 24 25 | syl2anc | |- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~~ ( A u. B ) ) |