This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djueq12 | |- ( ( A = B /\ C = D ) -> ( A |_| C ) = ( B |_| D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 | |- ( A = B -> ( { (/) } X. A ) = ( { (/) } X. B ) ) |
|
| 2 | 1 | adantr | |- ( ( A = B /\ C = D ) -> ( { (/) } X. A ) = ( { (/) } X. B ) ) |
| 3 | xpeq2 | |- ( C = D -> ( { 1o } X. C ) = ( { 1o } X. D ) ) |
|
| 4 | 3 | adantl | |- ( ( A = B /\ C = D ) -> ( { 1o } X. C ) = ( { 1o } X. D ) ) |
| 5 | 2 4 | uneq12d | |- ( ( A = B /\ C = D ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
| 6 | df-dju | |- ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) |
|
| 7 | df-dju | |- ( B |_| D ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( ( A = B /\ C = D ) -> ( A |_| C ) = ( B |_| D ) ) |