This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. A much shorter proof exists if the "divides" relation || can be used, see addmodlteqALT . (Contributed by AV, 20-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmodlteq | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I + S ) mod N ) = ( ( J + S ) mod N ) <-> I = J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | |- ( I e. ( 0 ..^ N ) -> I e. ZZ ) |
|
| 2 | 1 | zred | |- ( I e. ( 0 ..^ N ) -> I e. RR ) |
| 3 | 2 | 3ad2ant1 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> I e. RR ) |
| 4 | simp3 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> S e. ZZ ) |
|
| 5 | 4 | zred | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> S e. RR ) |
| 6 | elfzo0 | |- ( I e. ( 0 ..^ N ) <-> ( I e. NN0 /\ N e. NN /\ I < N ) ) |
|
| 7 | 6 | simp2bi | |- ( I e. ( 0 ..^ N ) -> N e. NN ) |
| 8 | 7 | nnrpd | |- ( I e. ( 0 ..^ N ) -> N e. RR+ ) |
| 9 | 8 | 3ad2ant1 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> N e. RR+ ) |
| 10 | modaddmod | |- ( ( I e. RR /\ S e. RR /\ N e. RR+ ) -> ( ( ( I mod N ) + S ) mod N ) = ( ( I + S ) mod N ) ) |
|
| 11 | 3 5 9 10 | syl3anc | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I mod N ) + S ) mod N ) = ( ( I + S ) mod N ) ) |
| 12 | 11 | eqcomd | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( I + S ) mod N ) = ( ( ( I mod N ) + S ) mod N ) ) |
| 13 | elfzoelz | |- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
|
| 14 | 13 | zred | |- ( J e. ( 0 ..^ N ) -> J e. RR ) |
| 15 | 14 | 3ad2ant2 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> J e. RR ) |
| 16 | modaddmod | |- ( ( J e. RR /\ S e. RR /\ N e. RR+ ) -> ( ( ( J mod N ) + S ) mod N ) = ( ( J + S ) mod N ) ) |
|
| 17 | 15 5 9 16 | syl3anc | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( J mod N ) + S ) mod N ) = ( ( J + S ) mod N ) ) |
| 18 | 17 | eqcomd | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( J + S ) mod N ) = ( ( ( J mod N ) + S ) mod N ) ) |
| 19 | 12 18 | eqeq12d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I + S ) mod N ) = ( ( J + S ) mod N ) <-> ( ( ( I mod N ) + S ) mod N ) = ( ( ( J mod N ) + S ) mod N ) ) ) |
| 20 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 21 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 22 | 20 21 | anim12i | |- ( ( I e. NN0 /\ N e. NN ) -> ( I e. RR /\ N e. RR+ ) ) |
| 23 | 22 | 3adant3 | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I e. RR /\ N e. RR+ ) ) |
| 24 | modcl | |- ( ( I e. RR /\ N e. RR+ ) -> ( I mod N ) e. RR ) |
|
| 25 | 23 24 | syl | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I mod N ) e. RR ) |
| 26 | 6 25 | sylbi | |- ( I e. ( 0 ..^ N ) -> ( I mod N ) e. RR ) |
| 27 | 26 | 3ad2ant1 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( I mod N ) e. RR ) |
| 28 | 27 5 | readdcld | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( I mod N ) + S ) e. RR ) |
| 29 | modcl | |- ( ( ( ( I mod N ) + S ) e. RR /\ N e. RR+ ) -> ( ( ( I mod N ) + S ) mod N ) e. RR ) |
|
| 30 | 29 | recnd | |- ( ( ( ( I mod N ) + S ) e. RR /\ N e. RR+ ) -> ( ( ( I mod N ) + S ) mod N ) e. CC ) |
| 31 | 28 9 30 | syl2anc | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I mod N ) + S ) mod N ) e. CC ) |
| 32 | elfzo0 | |- ( J e. ( 0 ..^ N ) <-> ( J e. NN0 /\ N e. NN /\ J < N ) ) |
|
| 33 | nn0re | |- ( J e. NN0 -> J e. RR ) |
|
| 34 | 33 21 | anim12i | |- ( ( J e. NN0 /\ N e. NN ) -> ( J e. RR /\ N e. RR+ ) ) |
| 35 | 34 | 3adant3 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J e. RR /\ N e. RR+ ) ) |
| 36 | modcl | |- ( ( J e. RR /\ N e. RR+ ) -> ( J mod N ) e. RR ) |
|
| 37 | 35 36 | syl | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J mod N ) e. RR ) |
| 38 | 32 37 | sylbi | |- ( J e. ( 0 ..^ N ) -> ( J mod N ) e. RR ) |
| 39 | 38 | 3ad2ant2 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( J mod N ) e. RR ) |
| 40 | 39 5 | readdcld | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( J mod N ) + S ) e. RR ) |
| 41 | modcl | |- ( ( ( ( J mod N ) + S ) e. RR /\ N e. RR+ ) -> ( ( ( J mod N ) + S ) mod N ) e. RR ) |
|
| 42 | 41 | recnd | |- ( ( ( ( J mod N ) + S ) e. RR /\ N e. RR+ ) -> ( ( ( J mod N ) + S ) mod N ) e. CC ) |
| 43 | 40 9 42 | syl2anc | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( J mod N ) + S ) mod N ) e. CC ) |
| 44 | 31 43 | subeq0ad | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) = 0 <-> ( ( ( I mod N ) + S ) mod N ) = ( ( ( J mod N ) + S ) mod N ) ) ) |
| 45 | oveq1 | |- ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) = 0 -> ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) mod N ) = ( 0 mod N ) ) |
|
| 46 | modsubmodmod | |- ( ( ( ( I mod N ) + S ) e. RR /\ ( ( J mod N ) + S ) e. RR /\ N e. RR+ ) -> ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) mod N ) = ( ( ( ( I mod N ) + S ) - ( ( J mod N ) + S ) ) mod N ) ) |
|
| 47 | 28 40 9 46 | syl3anc | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) mod N ) = ( ( ( ( I mod N ) + S ) - ( ( J mod N ) + S ) ) mod N ) ) |
| 48 | 26 | recnd | |- ( I e. ( 0 ..^ N ) -> ( I mod N ) e. CC ) |
| 49 | 48 | 3ad2ant1 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( I mod N ) e. CC ) |
| 50 | 38 | recnd | |- ( J e. ( 0 ..^ N ) -> ( J mod N ) e. CC ) |
| 51 | 50 | 3ad2ant2 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( J mod N ) e. CC ) |
| 52 | 4 | zcnd | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> S e. CC ) |
| 53 | 49 51 52 | pnpcan2d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I mod N ) + S ) - ( ( J mod N ) + S ) ) = ( ( I mod N ) - ( J mod N ) ) ) |
| 54 | 53 | oveq1d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( I mod N ) + S ) - ( ( J mod N ) + S ) ) mod N ) = ( ( ( I mod N ) - ( J mod N ) ) mod N ) ) |
| 55 | 47 54 | eqtrd | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) mod N ) = ( ( ( I mod N ) - ( J mod N ) ) mod N ) ) |
| 56 | 32 | simp2bi | |- ( J e. ( 0 ..^ N ) -> N e. NN ) |
| 57 | 56 | nnrpd | |- ( J e. ( 0 ..^ N ) -> N e. RR+ ) |
| 58 | 0mod | |- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
|
| 59 | 57 58 | syl | |- ( J e. ( 0 ..^ N ) -> ( 0 mod N ) = 0 ) |
| 60 | 59 | 3ad2ant2 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( 0 mod N ) = 0 ) |
| 61 | 55 60 | eqeq12d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) mod N ) = ( 0 mod N ) <-> ( ( ( I mod N ) - ( J mod N ) ) mod N ) = 0 ) ) |
| 62 | zmodidfzoimp | |- ( I e. ( 0 ..^ N ) -> ( I mod N ) = I ) |
|
| 63 | 62 | 3ad2ant1 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( I mod N ) = I ) |
| 64 | zmodidfzoimp | |- ( J e. ( 0 ..^ N ) -> ( J mod N ) = J ) |
|
| 65 | 64 | 3ad2ant2 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( J mod N ) = J ) |
| 66 | 63 65 | oveq12d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( I mod N ) - ( J mod N ) ) = ( I - J ) ) |
| 67 | 66 | oveq1d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I mod N ) - ( J mod N ) ) mod N ) = ( ( I - J ) mod N ) ) |
| 68 | 67 | eqeq1d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( I mod N ) - ( J mod N ) ) mod N ) = 0 <-> ( ( I - J ) mod N ) = 0 ) ) |
| 69 | zsubcl | |- ( ( I e. ZZ /\ J e. ZZ ) -> ( I - J ) e. ZZ ) |
|
| 70 | 1 13 69 | syl2an | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( I - J ) e. ZZ ) |
| 71 | 70 | zred | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( I - J ) e. RR ) |
| 72 | 8 | adantr | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> N e. RR+ ) |
| 73 | mod0 | |- ( ( ( I - J ) e. RR /\ N e. RR+ ) -> ( ( ( I - J ) mod N ) = 0 <-> ( ( I - J ) / N ) e. ZZ ) ) |
|
| 74 | 71 72 73 | syl2anc | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( ( I - J ) mod N ) = 0 <-> ( ( I - J ) / N ) e. ZZ ) ) |
| 75 | zdiv | |- ( ( N e. NN /\ ( I - J ) e. ZZ ) -> ( E. k e. ZZ ( N x. k ) = ( I - J ) <-> ( ( I - J ) / N ) e. ZZ ) ) |
|
| 76 | 7 70 75 | syl2an2r | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( E. k e. ZZ ( N x. k ) = ( I - J ) <-> ( ( I - J ) / N ) e. ZZ ) ) |
| 77 | oveq2 | |- ( k = 0 -> ( N x. k ) = ( N x. 0 ) ) |
|
| 78 | elfzoel2 | |- ( I e. ( 0 ..^ N ) -> N e. ZZ ) |
|
| 79 | 78 | zcnd | |- ( I e. ( 0 ..^ N ) -> N e. CC ) |
| 80 | 79 | mul01d | |- ( I e. ( 0 ..^ N ) -> ( N x. 0 ) = 0 ) |
| 81 | 80 | adantr | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( N x. 0 ) = 0 ) |
| 82 | 81 | adantr | |- ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( N x. 0 ) = 0 ) |
| 83 | 77 82 | sylan9eq | |- ( ( k = 0 /\ ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) ) -> ( N x. k ) = 0 ) |
| 84 | 83 | eqeq1d | |- ( ( k = 0 /\ ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) ) -> ( ( N x. k ) = ( I - J ) <-> 0 = ( I - J ) ) ) |
| 85 | eqcom | |- ( 0 = ( I - J ) <-> ( I - J ) = 0 ) |
|
| 86 | 1 | zcnd | |- ( I e. ( 0 ..^ N ) -> I e. CC ) |
| 87 | 13 | zcnd | |- ( J e. ( 0 ..^ N ) -> J e. CC ) |
| 88 | subeq0 | |- ( ( I e. CC /\ J e. CC ) -> ( ( I - J ) = 0 <-> I = J ) ) |
|
| 89 | 86 87 88 | syl2an | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( I - J ) = 0 <-> I = J ) ) |
| 90 | 89 | biimpd | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( I - J ) = 0 -> I = J ) ) |
| 91 | 85 90 | biimtrid | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( 0 = ( I - J ) -> I = J ) ) |
| 92 | 91 | adantr | |- ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( 0 = ( I - J ) -> I = J ) ) |
| 93 | 92 | adantl | |- ( ( k = 0 /\ ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) ) -> ( 0 = ( I - J ) -> I = J ) ) |
| 94 | 84 93 | sylbid | |- ( ( k = 0 /\ ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) ) -> ( ( N x. k ) = ( I - J ) -> I = J ) ) |
| 95 | 94 | ex | |- ( k = 0 -> ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) |
| 96 | subfzo0 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) |
|
| 97 | 96 | adantr | |- ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) |
| 98 | elz | |- ( k e. ZZ <-> ( k e. RR /\ ( k = 0 \/ k e. NN \/ -u k e. NN ) ) ) |
|
| 99 | pm2.24 | |- ( k = 0 -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) |
|
| 100 | 99 | a1d | |- ( k = 0 -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) |
| 101 | 100 | 2a1d | |- ( k = 0 -> ( k e. RR -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) ) |
| 102 | breq1 | |- ( ( N x. k ) = ( I - J ) -> ( ( N x. k ) < N <-> ( I - J ) < N ) ) |
|
| 103 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 104 | 103 | mulridd | |- ( N e. NN -> ( N x. 1 ) = N ) |
| 105 | 104 | adantr | |- ( ( N e. NN /\ k e. NN ) -> ( N x. 1 ) = N ) |
| 106 | 105 | eqcomd | |- ( ( N e. NN /\ k e. NN ) -> N = ( N x. 1 ) ) |
| 107 | 106 | breq2d | |- ( ( N e. NN /\ k e. NN ) -> ( ( N x. k ) < N <-> ( N x. k ) < ( N x. 1 ) ) ) |
| 108 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 109 | 108 | adantl | |- ( ( N e. NN /\ k e. NN ) -> k e. RR ) |
| 110 | 1red | |- ( ( N e. NN /\ k e. NN ) -> 1 e. RR ) |
|
| 111 | 21 | adantr | |- ( ( N e. NN /\ k e. NN ) -> N e. RR+ ) |
| 112 | 109 110 111 | ltmul2d | |- ( ( N e. NN /\ k e. NN ) -> ( k < 1 <-> ( N x. k ) < ( N x. 1 ) ) ) |
| 113 | nnge1 | |- ( k e. NN -> 1 <_ k ) |
|
| 114 | 1red | |- ( k e. NN -> 1 e. RR ) |
|
| 115 | 114 108 | lenltd | |- ( k e. NN -> ( 1 <_ k <-> -. k < 1 ) ) |
| 116 | pm2.21 | |- ( -. k < 1 -> ( k < 1 -> I = J ) ) |
|
| 117 | 115 116 | biimtrdi | |- ( k e. NN -> ( 1 <_ k -> ( k < 1 -> I = J ) ) ) |
| 118 | 113 117 | mpd | |- ( k e. NN -> ( k < 1 -> I = J ) ) |
| 119 | 118 | adantl | |- ( ( N e. NN /\ k e. NN ) -> ( k < 1 -> I = J ) ) |
| 120 | 112 119 | sylbird | |- ( ( N e. NN /\ k e. NN ) -> ( ( N x. k ) < ( N x. 1 ) -> I = J ) ) |
| 121 | 107 120 | sylbid | |- ( ( N e. NN /\ k e. NN ) -> ( ( N x. k ) < N -> I = J ) ) |
| 122 | 121 | ex | |- ( N e. NN -> ( k e. NN -> ( ( N x. k ) < N -> I = J ) ) ) |
| 123 | 122 | 3ad2ant2 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( k e. NN -> ( ( N x. k ) < N -> I = J ) ) ) |
| 124 | 32 123 | sylbi | |- ( J e. ( 0 ..^ N ) -> ( k e. NN -> ( ( N x. k ) < N -> I = J ) ) ) |
| 125 | 124 | adantl | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( k e. NN -> ( ( N x. k ) < N -> I = J ) ) ) |
| 126 | 125 | com13 | |- ( ( N x. k ) < N -> ( k e. NN -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> I = J ) ) ) |
| 127 | 126 | a1dd | |- ( ( N x. k ) < N -> ( k e. NN -> ( -. k = 0 -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> I = J ) ) ) ) |
| 128 | 102 127 | biimtrrdi | |- ( ( N x. k ) = ( I - J ) -> ( ( I - J ) < N -> ( k e. NN -> ( -. k = 0 -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> I = J ) ) ) ) ) |
| 129 | 128 | com15 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( I - J ) < N -> ( k e. NN -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 130 | 129 | com12 | |- ( ( I - J ) < N -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( k e. NN -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 131 | 130 | adantl | |- ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( k e. NN -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 132 | 131 | com13 | |- ( k e. NN -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 133 | 132 | a1d | |- ( k e. NN -> ( k e. RR -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) ) |
| 134 | breq2 | |- ( ( N x. k ) = ( I - J ) -> ( -u N < ( N x. k ) <-> -u N < ( I - J ) ) ) |
|
| 135 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 136 | simpr | |- ( ( -u k e. NN /\ k e. RR ) -> k e. RR ) |
|
| 137 | remulcl | |- ( ( N e. RR /\ k e. RR ) -> ( N x. k ) e. RR ) |
|
| 138 | 135 136 137 | syl2an | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( N x. k ) e. RR ) |
| 139 | 135 | adantr | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> N e. RR ) |
| 140 | 138 139 | possumd | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( 0 < ( ( N x. k ) + N ) <-> -u N < ( N x. k ) ) ) |
| 141 | 103 | adantr | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> N e. CC ) |
| 142 | 141 | mulridd | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( N x. 1 ) = N ) |
| 143 | 142 | eqcomd | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> N = ( N x. 1 ) ) |
| 144 | 143 | oveq2d | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( ( N x. k ) + N ) = ( ( N x. k ) + ( N x. 1 ) ) ) |
| 145 | recn | |- ( k e. RR -> k e. CC ) |
|
| 146 | 145 | adantl | |- ( ( -u k e. NN /\ k e. RR ) -> k e. CC ) |
| 147 | 146 | adantl | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> k e. CC ) |
| 148 | 1cnd | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> 1 e. CC ) |
|
| 149 | 141 147 148 | adddid | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( N x. ( k + 1 ) ) = ( ( N x. k ) + ( N x. 1 ) ) ) |
| 150 | 144 149 | eqtr4d | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( ( N x. k ) + N ) = ( N x. ( k + 1 ) ) ) |
| 151 | 150 | breq2d | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( 0 < ( ( N x. k ) + N ) <-> 0 < ( N x. ( k + 1 ) ) ) ) |
| 152 | peano2re | |- ( k e. RR -> ( k + 1 ) e. RR ) |
|
| 153 | 152 | adantl | |- ( ( -u k e. NN /\ k e. RR ) -> ( k + 1 ) e. RR ) |
| 154 | 153 | adantl | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( k + 1 ) e. RR ) |
| 155 | 139 154 | remulcld | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( N x. ( k + 1 ) ) e. RR ) |
| 156 | 0red | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> 0 e. RR ) |
|
| 157 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 158 | 157 | nn0ge0d | |- ( N e. NN -> 0 <_ N ) |
| 159 | nnge1 | |- ( -u k e. NN -> 1 <_ -u k ) |
|
| 160 | id | |- ( k e. CC -> k e. CC ) |
|
| 161 | 1cnd | |- ( k e. CC -> 1 e. CC ) |
|
| 162 | 160 161 | addcomd | |- ( k e. CC -> ( k + 1 ) = ( 1 + k ) ) |
| 163 | 161 160 | subnegd | |- ( k e. CC -> ( 1 - -u k ) = ( 1 + k ) ) |
| 164 | 162 163 | eqtr4d | |- ( k e. CC -> ( k + 1 ) = ( 1 - -u k ) ) |
| 165 | 145 164 | syl | |- ( k e. RR -> ( k + 1 ) = ( 1 - -u k ) ) |
| 166 | 165 | adantl | |- ( ( 1 <_ -u k /\ k e. RR ) -> ( k + 1 ) = ( 1 - -u k ) ) |
| 167 | 1red | |- ( k e. RR -> 1 e. RR ) |
|
| 168 | renegcl | |- ( k e. RR -> -u k e. RR ) |
|
| 169 | 167 168 | suble0d | |- ( k e. RR -> ( ( 1 - -u k ) <_ 0 <-> 1 <_ -u k ) ) |
| 170 | 169 | biimparc | |- ( ( 1 <_ -u k /\ k e. RR ) -> ( 1 - -u k ) <_ 0 ) |
| 171 | 166 170 | eqbrtrd | |- ( ( 1 <_ -u k /\ k e. RR ) -> ( k + 1 ) <_ 0 ) |
| 172 | 159 171 | sylan | |- ( ( -u k e. NN /\ k e. RR ) -> ( k + 1 ) <_ 0 ) |
| 173 | 158 172 | anim12i | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( 0 <_ N /\ ( k + 1 ) <_ 0 ) ) |
| 174 | 173 | olcd | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( ( N <_ 0 /\ 0 <_ ( k + 1 ) ) \/ ( 0 <_ N /\ ( k + 1 ) <_ 0 ) ) ) |
| 175 | mulle0b | |- ( ( N e. RR /\ ( k + 1 ) e. RR ) -> ( ( N x. ( k + 1 ) ) <_ 0 <-> ( ( N <_ 0 /\ 0 <_ ( k + 1 ) ) \/ ( 0 <_ N /\ ( k + 1 ) <_ 0 ) ) ) ) |
|
| 176 | 135 153 175 | syl2an | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( ( N x. ( k + 1 ) ) <_ 0 <-> ( ( N <_ 0 /\ 0 <_ ( k + 1 ) ) \/ ( 0 <_ N /\ ( k + 1 ) <_ 0 ) ) ) ) |
| 177 | 174 176 | mpbird | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( N x. ( k + 1 ) ) <_ 0 ) |
| 178 | 155 156 177 | lensymd | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> -. 0 < ( N x. ( k + 1 ) ) ) |
| 179 | 178 | pm2.21d | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( 0 < ( N x. ( k + 1 ) ) -> I = J ) ) |
| 180 | 151 179 | sylbid | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( 0 < ( ( N x. k ) + N ) -> I = J ) ) |
| 181 | 140 180 | sylbird | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( -u N < ( N x. k ) -> I = J ) ) |
| 182 | 181 | a1d | |- ( ( N e. NN /\ ( -u k e. NN /\ k e. RR ) ) -> ( -. k = 0 -> ( -u N < ( N x. k ) -> I = J ) ) ) |
| 183 | 182 | ex | |- ( N e. NN -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( -u N < ( N x. k ) -> I = J ) ) ) ) |
| 184 | 183 | 3ad2ant2 | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( -u N < ( N x. k ) -> I = J ) ) ) ) |
| 185 | 6 184 | sylbi | |- ( I e. ( 0 ..^ N ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( -u N < ( N x. k ) -> I = J ) ) ) ) |
| 186 | 185 | adantr | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( -u N < ( N x. k ) -> I = J ) ) ) ) |
| 187 | 186 | com14 | |- ( -u N < ( N x. k ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> I = J ) ) ) ) |
| 188 | 134 187 | biimtrrdi | |- ( ( N x. k ) = ( I - J ) -> ( -u N < ( I - J ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> I = J ) ) ) ) ) |
| 189 | 188 | com15 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( -u N < ( I - J ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 190 | 189 | com12 | |- ( -u N < ( I - J ) -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 191 | 190 | adantr | |- ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u k e. NN /\ k e. RR ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 192 | 191 | com13 | |- ( ( -u k e. NN /\ k e. RR ) -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 193 | 192 | ex | |- ( -u k e. NN -> ( k e. RR -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) ) |
| 194 | 101 133 193 | 3jaoi | |- ( ( k = 0 \/ k e. NN \/ -u k e. NN ) -> ( k e. RR -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) ) |
| 195 | 194 | impcom | |- ( ( k e. RR /\ ( k = 0 \/ k e. NN \/ -u k e. NN ) ) -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 196 | 98 195 | sylbi | |- ( k e. ZZ -> ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) ) |
| 197 | 196 | impcom | |- ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( ( -u N < ( I - J ) /\ ( I - J ) < N ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) ) |
| 198 | 97 197 | mpd | |- ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( -. k = 0 -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) |
| 199 | 198 | com12 | |- ( -. k = 0 -> ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( ( N x. k ) = ( I - J ) -> I = J ) ) ) |
| 200 | 95 199 | pm2.61i | |- ( ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) /\ k e. ZZ ) -> ( ( N x. k ) = ( I - J ) -> I = J ) ) |
| 201 | 200 | rexlimdva | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( E. k e. ZZ ( N x. k ) = ( I - J ) -> I = J ) ) |
| 202 | 76 201 | sylbird | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( ( I - J ) / N ) e. ZZ -> I = J ) ) |
| 203 | 74 202 | sylbid | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( ( I - J ) mod N ) = 0 -> I = J ) ) |
| 204 | 203 | 3adant3 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I - J ) mod N ) = 0 -> I = J ) ) |
| 205 | 68 204 | sylbid | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( I mod N ) - ( J mod N ) ) mod N ) = 0 -> I = J ) ) |
| 206 | 61 205 | sylbid | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) mod N ) = ( 0 mod N ) -> I = J ) ) |
| 207 | 45 206 | syl5 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( ( I mod N ) + S ) mod N ) - ( ( ( J mod N ) + S ) mod N ) ) = 0 -> I = J ) ) |
| 208 | 44 207 | sylbird | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( ( I mod N ) + S ) mod N ) = ( ( ( J mod N ) + S ) mod N ) -> I = J ) ) |
| 209 | 19 208 | sylbid | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I + S ) mod N ) = ( ( J + S ) mod N ) -> I = J ) ) |
| 210 | oveq1 | |- ( I = J -> ( I + S ) = ( J + S ) ) |
|
| 211 | 210 | oveq1d | |- ( I = J -> ( ( I + S ) mod N ) = ( ( J + S ) mod N ) ) |
| 212 | 209 211 | impbid1 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) /\ S e. ZZ ) -> ( ( ( I + S ) mod N ) = ( ( J + S ) mod N ) <-> I = J ) ) |