This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subfzo0 | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( I e. ( 0 ..^ N ) <-> ( I e. NN0 /\ N e. NN /\ I < N ) ) |
|
| 2 | elfzo0 | |- ( J e. ( 0 ..^ N ) <-> ( J e. NN0 /\ N e. NN /\ J < N ) ) |
|
| 3 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 4 | 3 | adantr | |- ( ( I e. NN0 /\ I < N ) -> I e. RR ) |
| 5 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 6 | nn0re | |- ( J e. NN0 -> J e. RR ) |
|
| 7 | resubcl | |- ( ( N e. RR /\ J e. RR ) -> ( N - J ) e. RR ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( N e. NN /\ J e. NN0 ) -> ( N - J ) e. RR ) |
| 9 | 8 | ancoms | |- ( ( J e. NN0 /\ N e. NN ) -> ( N - J ) e. RR ) |
| 10 | 9 | 3adant3 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( N - J ) e. RR ) |
| 11 | 4 10 | anim12i | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I e. RR /\ ( N - J ) e. RR ) ) |
| 12 | nn0ge0 | |- ( I e. NN0 -> 0 <_ I ) |
|
| 13 | 12 | adantr | |- ( ( I e. NN0 /\ I < N ) -> 0 <_ I ) |
| 14 | posdif | |- ( ( J e. RR /\ N e. RR ) -> ( J < N <-> 0 < ( N - J ) ) ) |
|
| 15 | 6 5 14 | syl2an | |- ( ( J e. NN0 /\ N e. NN ) -> ( J < N <-> 0 < ( N - J ) ) ) |
| 16 | 15 | biimp3a | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> 0 < ( N - J ) ) |
| 17 | 13 16 | anim12i | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( 0 <_ I /\ 0 < ( N - J ) ) ) |
| 18 | addgegt0 | |- ( ( ( I e. RR /\ ( N - J ) e. RR ) /\ ( 0 <_ I /\ 0 < ( N - J ) ) ) -> 0 < ( I + ( N - J ) ) ) |
|
| 19 | 11 17 18 | syl2anc | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> 0 < ( I + ( N - J ) ) ) |
| 20 | nn0cn | |- ( I e. NN0 -> I e. CC ) |
|
| 21 | 20 | adantr | |- ( ( I e. NN0 /\ I < N ) -> I e. CC ) |
| 22 | 21 | adantr | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I e. CC ) |
| 23 | nn0cn | |- ( J e. NN0 -> J e. CC ) |
|
| 24 | 23 | 3ad2ant1 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. CC ) |
| 25 | 24 | adantl | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> J e. CC ) |
| 26 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 27 | 26 | 3ad2ant2 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. CC ) |
| 28 | 27 | adantl | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. CC ) |
| 29 | 22 25 28 | subadd23d | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( ( I - J ) + N ) = ( I + ( N - J ) ) ) |
| 30 | 19 29 | breqtrrd | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> 0 < ( ( I - J ) + N ) ) |
| 31 | 6 | 3ad2ant1 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. RR ) |
| 32 | resubcl | |- ( ( I e. RR /\ J e. RR ) -> ( I - J ) e. RR ) |
|
| 33 | 4 31 32 | syl2an | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I - J ) e. RR ) |
| 34 | 5 | 3ad2ant2 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. RR ) |
| 35 | 34 | adantl | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. RR ) |
| 36 | 33 35 | possumd | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( 0 < ( ( I - J ) + N ) <-> -u N < ( I - J ) ) ) |
| 37 | 30 36 | mpbid | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> -u N < ( I - J ) ) |
| 38 | 3 | adantr | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I e. RR ) |
| 39 | 34 | adantl | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. RR ) |
| 40 | readdcl | |- ( ( J e. RR /\ N e. RR ) -> ( J + N ) e. RR ) |
|
| 41 | 6 5 40 | syl2an | |- ( ( J e. NN0 /\ N e. NN ) -> ( J + N ) e. RR ) |
| 42 | 41 | 3adant3 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + N ) e. RR ) |
| 43 | 42 | adantl | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( J + N ) e. RR ) |
| 44 | 38 39 43 | 3jca | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I e. RR /\ N e. RR /\ ( J + N ) e. RR ) ) |
| 45 | nn0ge0 | |- ( J e. NN0 -> 0 <_ J ) |
|
| 46 | 45 | 3ad2ant1 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> 0 <_ J ) |
| 47 | 46 | adantl | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> 0 <_ J ) |
| 48 | 5 6 | anim12i | |- ( ( N e. NN /\ J e. NN0 ) -> ( N e. RR /\ J e. RR ) ) |
| 49 | 48 | ancoms | |- ( ( J e. NN0 /\ N e. NN ) -> ( N e. RR /\ J e. RR ) ) |
| 50 | 49 | 3adant3 | |- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( N e. RR /\ J e. RR ) ) |
| 51 | 50 | adantl | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( N e. RR /\ J e. RR ) ) |
| 52 | addge02 | |- ( ( N e. RR /\ J e. RR ) -> ( 0 <_ J <-> N <_ ( J + N ) ) ) |
|
| 53 | 51 52 | syl | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( 0 <_ J <-> N <_ ( J + N ) ) ) |
| 54 | 47 53 | mpbid | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N <_ ( J + N ) ) |
| 55 | 44 54 | lelttrdi | |- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I < N -> I < ( J + N ) ) ) |
| 56 | 55 | impancom | |- ( ( I e. NN0 /\ I < N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> I < ( J + N ) ) ) |
| 57 | 56 | imp | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I < ( J + N ) ) |
| 58 | 4 | adantr | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I e. RR ) |
| 59 | 31 | adantl | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> J e. RR ) |
| 60 | 58 59 35 | ltsubadd2d | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( ( I - J ) < N <-> I < ( J + N ) ) ) |
| 61 | 57 60 | mpbird | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I - J ) < N ) |
| 62 | 37 61 | jca | |- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) |
| 63 | 62 | ex | |- ( ( I e. NN0 /\ I < N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
| 64 | 2 63 | biimtrid | |- ( ( I e. NN0 /\ I < N ) -> ( J e. ( 0 ..^ N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
| 65 | 64 | 3adant2 | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( J e. ( 0 ..^ N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
| 66 | 1 65 | sylbi | |- ( I e. ( 0 ..^ N ) -> ( J e. ( 0 ..^ N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
| 67 | 66 | imp | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) |