This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodidfzoimp | |- ( M e. ( 0 ..^ N ) -> ( M mod N ) = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( M e. ( 0 ..^ N ) <-> ( M e. NN0 /\ N e. NN /\ M < N ) ) |
|
| 2 | nn0z | |- ( M e. NN0 -> M e. ZZ ) |
|
| 3 | 2 | anim1i | |- ( ( M e. NN0 /\ N e. NN ) -> ( M e. ZZ /\ N e. NN ) ) |
| 4 | 3 | 3adant3 | |- ( ( M e. NN0 /\ N e. NN /\ M < N ) -> ( M e. ZZ /\ N e. NN ) ) |
| 5 | 1 4 | sylbi | |- ( M e. ( 0 ..^ N ) -> ( M e. ZZ /\ N e. NN ) ) |
| 6 | zmodidfzo | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ..^ N ) ) ) |
|
| 7 | 6 | biimprd | |- ( ( M e. ZZ /\ N e. NN ) -> ( M e. ( 0 ..^ N ) -> ( M mod N ) = M ) ) |
| 8 | 5 7 | mpcom | |- ( M e. ( 0 ..^ N ) -> ( M mod N ) = M ) |