This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " M divides N ". (Contributed by NM, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zdiv | |- ( ( M e. NN /\ N e. ZZ ) -> ( E. k e. ZZ ( M x. k ) = N <-> ( N / M ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 | |- ( M e. NN -> M =/= 0 ) |
|
| 2 | 1 | adantr | |- ( ( M e. NN /\ N e. ZZ ) -> M =/= 0 ) |
| 3 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 4 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 5 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 6 | divcan3 | |- ( ( k e. CC /\ M e. CC /\ M =/= 0 ) -> ( ( M x. k ) / M ) = k ) |
|
| 7 | 6 | 3coml | |- ( ( M e. CC /\ M =/= 0 /\ k e. CC ) -> ( ( M x. k ) / M ) = k ) |
| 8 | 7 | 3expa | |- ( ( ( M e. CC /\ M =/= 0 ) /\ k e. CC ) -> ( ( M x. k ) / M ) = k ) |
| 9 | 5 8 | sylan2 | |- ( ( ( M e. CC /\ M =/= 0 ) /\ k e. ZZ ) -> ( ( M x. k ) / M ) = k ) |
| 10 | 9 | 3adantl2 | |- ( ( ( M e. CC /\ N e. CC /\ M =/= 0 ) /\ k e. ZZ ) -> ( ( M x. k ) / M ) = k ) |
| 11 | oveq1 | |- ( ( M x. k ) = N -> ( ( M x. k ) / M ) = ( N / M ) ) |
|
| 12 | 10 11 | sylan9req | |- ( ( ( ( M e. CC /\ N e. CC /\ M =/= 0 ) /\ k e. ZZ ) /\ ( M x. k ) = N ) -> k = ( N / M ) ) |
| 13 | simplr | |- ( ( ( ( M e. CC /\ N e. CC /\ M =/= 0 ) /\ k e. ZZ ) /\ ( M x. k ) = N ) -> k e. ZZ ) |
|
| 14 | 12 13 | eqeltrrd | |- ( ( ( ( M e. CC /\ N e. CC /\ M =/= 0 ) /\ k e. ZZ ) /\ ( M x. k ) = N ) -> ( N / M ) e. ZZ ) |
| 15 | 14 | rexlimdva2 | |- ( ( M e. CC /\ N e. CC /\ M =/= 0 ) -> ( E. k e. ZZ ( M x. k ) = N -> ( N / M ) e. ZZ ) ) |
| 16 | divcan2 | |- ( ( N e. CC /\ M e. CC /\ M =/= 0 ) -> ( M x. ( N / M ) ) = N ) |
|
| 17 | 16 | 3com12 | |- ( ( M e. CC /\ N e. CC /\ M =/= 0 ) -> ( M x. ( N / M ) ) = N ) |
| 18 | oveq2 | |- ( k = ( N / M ) -> ( M x. k ) = ( M x. ( N / M ) ) ) |
|
| 19 | 18 | eqeq1d | |- ( k = ( N / M ) -> ( ( M x. k ) = N <-> ( M x. ( N / M ) ) = N ) ) |
| 20 | 19 | rspcev | |- ( ( ( N / M ) e. ZZ /\ ( M x. ( N / M ) ) = N ) -> E. k e. ZZ ( M x. k ) = N ) |
| 21 | 20 | expcom | |- ( ( M x. ( N / M ) ) = N -> ( ( N / M ) e. ZZ -> E. k e. ZZ ( M x. k ) = N ) ) |
| 22 | 17 21 | syl | |- ( ( M e. CC /\ N e. CC /\ M =/= 0 ) -> ( ( N / M ) e. ZZ -> E. k e. ZZ ( M x. k ) = N ) ) |
| 23 | 15 22 | impbid | |- ( ( M e. CC /\ N e. CC /\ M =/= 0 ) -> ( E. k e. ZZ ( M x. k ) = N <-> ( N / M ) e. ZZ ) ) |
| 24 | 23 | 3expia | |- ( ( M e. CC /\ N e. CC ) -> ( M =/= 0 -> ( E. k e. ZZ ( M x. k ) = N <-> ( N / M ) e. ZZ ) ) ) |
| 25 | 3 4 24 | syl2an | |- ( ( M e. NN /\ N e. ZZ ) -> ( M =/= 0 -> ( E. k e. ZZ ( M x. k ) = N <-> ( N / M ) e. ZZ ) ) ) |
| 26 | 2 25 | mpd | |- ( ( M e. NN /\ N e. ZZ ) -> ( E. k e. ZZ ( M x. k ) = N <-> ( N / M ) e. ZZ ) ) |