This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem13 | |- ( F ` (/) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | 1 | ackbij1lem10 | |- F : ( ~P _om i^i Fin ) --> _om |
| 3 | peano1 | |- (/) e. _om |
|
| 4 | 2 3 | f0cli | |- ( F ` (/) ) e. _om |
| 5 | nna0 | |- ( ( F ` (/) ) e. _om -> ( ( F ` (/) ) +o (/) ) = ( F ` (/) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( F ` (/) ) +o (/) ) = ( F ` (/) ) |
| 7 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 8 | 7 | fveq2i | |- ( F ` ( (/) u. (/) ) ) = ( F ` (/) ) |
| 9 | ackbij1lem3 | |- ( (/) e. _om -> (/) e. ( ~P _om i^i Fin ) ) |
|
| 10 | 3 9 | ax-mp | |- (/) e. ( ~P _om i^i Fin ) |
| 11 | in0 | |- ( (/) i^i (/) ) = (/) |
|
| 12 | 1 | ackbij1lem9 | |- ( ( (/) e. ( ~P _om i^i Fin ) /\ (/) e. ( ~P _om i^i Fin ) /\ ( (/) i^i (/) ) = (/) ) -> ( F ` ( (/) u. (/) ) ) = ( ( F ` (/) ) +o ( F ` (/) ) ) ) |
| 13 | 10 10 11 12 | mp3an | |- ( F ` ( (/) u. (/) ) ) = ( ( F ` (/) ) +o ( F ` (/) ) ) |
| 14 | 6 8 13 | 3eqtr2ri | |- ( ( F ` (/) ) +o ( F ` (/) ) ) = ( ( F ` (/) ) +o (/) ) |
| 15 | nnacan | |- ( ( ( F ` (/) ) e. _om /\ ( F ` (/) ) e. _om /\ (/) e. _om ) -> ( ( ( F ` (/) ) +o ( F ` (/) ) ) = ( ( F ` (/) ) +o (/) ) <-> ( F ` (/) ) = (/) ) ) |
|
| 16 | 4 4 3 15 | mp3an | |- ( ( ( F ` (/) ) +o ( F ` (/) ) ) = ( ( F ` (/) ) +o (/) ) <-> ( F ` (/) ) = (/) ) |
| 17 | 14 16 | mpbi | |- ( F ` (/) ) = (/) |