This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008) (Revised by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reef11 | |- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` A ) = ( exp ` B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efle | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( exp ` A ) <_ ( exp ` B ) ) ) |
|
| 2 | efle | |- ( ( B e. RR /\ A e. RR ) -> ( B <_ A <-> ( exp ` B ) <_ ( exp ` A ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B <_ A <-> ( exp ` B ) <_ ( exp ` A ) ) ) |
| 4 | 1 3 | anbi12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B /\ B <_ A ) <-> ( ( exp ` A ) <_ ( exp ` B ) /\ ( exp ` B ) <_ ( exp ` A ) ) ) ) |
| 5 | letri3 | |- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
|
| 6 | reefcl | |- ( A e. RR -> ( exp ` A ) e. RR ) |
|
| 7 | reefcl | |- ( B e. RR -> ( exp ` B ) e. RR ) |
|
| 8 | letri3 | |- ( ( ( exp ` A ) e. RR /\ ( exp ` B ) e. RR ) -> ( ( exp ` A ) = ( exp ` B ) <-> ( ( exp ` A ) <_ ( exp ` B ) /\ ( exp ` B ) <_ ( exp ` A ) ) ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` A ) = ( exp ` B ) <-> ( ( exp ` A ) <_ ( exp ` B ) /\ ( exp ` B ) <_ ( exp ` A ) ) ) ) |
| 10 | 4 5 9 | 3bitr4rd | |- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` A ) = ( exp ` B ) <-> A = B ) ) |