This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs2dif | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subid1 | |- ( A e. CC -> ( A - 0 ) = A ) |
|
| 2 | 1 | fveq2d | |- ( A e. CC -> ( abs ` ( A - 0 ) ) = ( abs ` A ) ) |
| 3 | subid1 | |- ( B e. CC -> ( B - 0 ) = B ) |
|
| 4 | 3 | fveq2d | |- ( B e. CC -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
| 5 | 2 4 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) = ( ( abs ` A ) - ( abs ` B ) ) ) |
| 6 | 0cn | |- 0 e. CC |
|
| 7 | abs3dif | |- ( ( A e. CC /\ 0 e. CC /\ B e. CC ) -> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) |
|
| 8 | 6 7 | mp3an2 | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) |
| 9 | subcl | |- ( ( A e. CC /\ 0 e. CC ) -> ( A - 0 ) e. CC ) |
|
| 10 | 6 9 | mpan2 | |- ( A e. CC -> ( A - 0 ) e. CC ) |
| 11 | abscl | |- ( ( A - 0 ) e. CC -> ( abs ` ( A - 0 ) ) e. RR ) |
|
| 12 | 10 11 | syl | |- ( A e. CC -> ( abs ` ( A - 0 ) ) e. RR ) |
| 13 | subcl | |- ( ( B e. CC /\ 0 e. CC ) -> ( B - 0 ) e. CC ) |
|
| 14 | 6 13 | mpan2 | |- ( B e. CC -> ( B - 0 ) e. CC ) |
| 15 | abscl | |- ( ( B - 0 ) e. CC -> ( abs ` ( B - 0 ) ) e. RR ) |
|
| 16 | 14 15 | syl | |- ( B e. CC -> ( abs ` ( B - 0 ) ) e. RR ) |
| 17 | 12 16 | anim12i | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR ) ) |
| 18 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 19 | abscl | |- ( ( A - B ) e. CC -> ( abs ` ( A - B ) ) e. RR ) |
|
| 20 | 18 19 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) e. RR ) |
| 21 | df-3an | |- ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) <-> ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR ) /\ ( abs ` ( A - B ) ) e. RR ) ) |
|
| 22 | 17 20 21 | sylanbrc | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) ) |
| 23 | lesubadd | |- ( ( ( abs ` ( A - 0 ) ) e. RR /\ ( abs ` ( B - 0 ) ) e. RR /\ ( abs ` ( A - B ) ) e. RR ) -> ( ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) <-> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) ) |
|
| 24 | 22 23 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) <-> ( abs ` ( A - 0 ) ) <_ ( ( abs ` ( A - B ) ) + ( abs ` ( B - 0 ) ) ) ) ) |
| 25 | 8 24 | mpbird | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - 0 ) ) - ( abs ` ( B - 0 ) ) ) <_ ( abs ` ( A - B ) ) ) |
| 26 | 5 25 | eqbrtrrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) ) |