This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018) (Revised by AV, 5-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxsuffeqwrdeq | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W = S <-> ( ( # ` W ) = ( # ` S ) /\ ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqwrd | |- ( ( W e. Word V /\ S e. Word V ) -> ( W = S <-> ( ( # ` W ) = ( # ` S ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W = S <-> ( ( # ` W ) = ( # ` S ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) |
| 3 | elfzofz | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ( 0 ... ( # ` W ) ) ) |
|
| 4 | fzosplit | |- ( I e. ( 0 ... ( # ` W ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) |
| 7 | 6 | adantr | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) |
| 8 | 7 | raleqdv | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) <-> A. i e. ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ( W ` i ) = ( S ` i ) ) ) |
| 9 | ralunb | |- ( A. i e. ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ( W ` i ) = ( S ` i ) <-> ( A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) /\ A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) |
|
| 10 | 8 9 | bitrdi | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) <-> ( A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) /\ A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) |
| 11 | eqidd | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> I = I ) |
|
| 12 | 3simpa | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W e. Word V /\ S e. Word V ) ) |
|
| 13 | 12 | adantr | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( W e. Word V /\ S e. Word V ) ) |
| 14 | elfzonn0 | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. NN0 ) |
|
| 15 | 14 14 | jca | |- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I e. NN0 /\ I e. NN0 ) ) |
| 16 | 15 | 3ad2ant3 | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I e. NN0 /\ I e. NN0 ) ) |
| 17 | 16 | adantr | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( I e. NN0 /\ I e. NN0 ) ) |
| 18 | elfzo0le | |- ( I e. ( 0 ..^ ( # ` W ) ) -> I <_ ( # ` W ) ) |
|
| 19 | 18 | 3ad2ant3 | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I <_ ( # ` W ) ) |
| 20 | 19 | adantr | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> I <_ ( # ` W ) ) |
| 21 | breq2 | |- ( ( # ` W ) = ( # ` S ) -> ( I <_ ( # ` W ) <-> I <_ ( # ` S ) ) ) |
|
| 22 | 21 | adantl | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( I <_ ( # ` W ) <-> I <_ ( # ` S ) ) ) |
| 23 | 20 22 | mpbid | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> I <_ ( # ` S ) ) |
| 24 | pfxeq | |- ( ( ( W e. Word V /\ S e. Word V ) /\ ( I e. NN0 /\ I e. NN0 ) /\ ( I <_ ( # ` W ) /\ I <_ ( # ` S ) ) ) -> ( ( W prefix I ) = ( S prefix I ) <-> ( I = I /\ A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) ) ) ) |
|
| 25 | 13 17 20 23 24 | syl112anc | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( W prefix I ) = ( S prefix I ) <-> ( I = I /\ A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) ) ) ) |
| 26 | 11 25 | mpbirand | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( W prefix I ) = ( S prefix I ) <-> A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) ) ) |
| 27 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 28 | 27 14 | anim12ci | |- ( ( W e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I e. NN0 /\ ( # ` W ) e. NN0 ) ) |
| 29 | 28 | 3adant2 | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I e. NN0 /\ ( # ` W ) e. NN0 ) ) |
| 30 | 29 | adantr | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( I e. NN0 /\ ( # ` W ) e. NN0 ) ) |
| 31 | 27 | nn0red | |- ( W e. Word V -> ( # ` W ) e. RR ) |
| 32 | 31 | leidd | |- ( W e. Word V -> ( # ` W ) <_ ( # ` W ) ) |
| 33 | 32 | adantr | |- ( ( W e. Word V /\ ( # ` W ) = ( # ` S ) ) -> ( # ` W ) <_ ( # ` W ) ) |
| 34 | eqle | |- ( ( ( # ` W ) e. RR /\ ( # ` W ) = ( # ` S ) ) -> ( # ` W ) <_ ( # ` S ) ) |
|
| 35 | 31 34 | sylan | |- ( ( W e. Word V /\ ( # ` W ) = ( # ` S ) ) -> ( # ` W ) <_ ( # ` S ) ) |
| 36 | 33 35 | jca | |- ( ( W e. Word V /\ ( # ` W ) = ( # ` S ) ) -> ( ( # ` W ) <_ ( # ` W ) /\ ( # ` W ) <_ ( # ` S ) ) ) |
| 37 | 36 | 3ad2antl1 | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( # ` W ) <_ ( # ` W ) /\ ( # ` W ) <_ ( # ` S ) ) ) |
| 38 | swrdspsleq | |- ( ( ( W e. Word V /\ S e. Word V ) /\ ( I e. NN0 /\ ( # ` W ) e. NN0 ) /\ ( ( # ` W ) <_ ( # ` W ) /\ ( # ` W ) <_ ( # ` S ) ) ) -> ( ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) <-> A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) |
|
| 39 | 13 30 37 38 | syl3anc | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) <-> A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) |
| 40 | 26 39 | anbi12d | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) <-> ( A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) /\ A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) |
| 41 | 10 40 | bitr4d | |- ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) <-> ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) ) ) |
| 42 | 41 | pm5.32da | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) = ( # ` S ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) <-> ( ( # ` W ) = ( # ` S ) /\ ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) ) ) ) |
| 43 | 2 42 | bitrd | |- ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W = S <-> ( ( # ` W ) = ( # ` S ) /\ ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) ) ) ) |