This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrd2lsw | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> W e. Word V ) |
|
| 2 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 3 | 1z | |- 1 e. ZZ |
|
| 4 | nn0z | |- ( ( # ` W ) e. NN0 -> ( # ` W ) e. ZZ ) |
|
| 5 | zltp1le | |- ( ( 1 e. ZZ /\ ( # ` W ) e. ZZ ) -> ( 1 < ( # ` W ) <-> ( 1 + 1 ) <_ ( # ` W ) ) ) |
|
| 6 | 3 4 5 | sylancr | |- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) <-> ( 1 + 1 ) <_ ( # ` W ) ) ) |
| 7 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 8 | 7 | a1i | |- ( ( # ` W ) e. NN0 -> ( 1 + 1 ) = 2 ) |
| 9 | 8 | breq1d | |- ( ( # ` W ) e. NN0 -> ( ( 1 + 1 ) <_ ( # ` W ) <-> 2 <_ ( # ` W ) ) ) |
| 10 | 9 | biimpd | |- ( ( # ` W ) e. NN0 -> ( ( 1 + 1 ) <_ ( # ` W ) -> 2 <_ ( # ` W ) ) ) |
| 11 | 6 10 | sylbid | |- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) -> 2 <_ ( # ` W ) ) ) |
| 12 | 11 | imp | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> 2 <_ ( # ` W ) ) |
| 13 | 2nn0 | |- 2 e. NN0 |
|
| 14 | 13 | jctl | |- ( ( # ` W ) e. NN0 -> ( 2 e. NN0 /\ ( # ` W ) e. NN0 ) ) |
| 15 | 14 | adantr | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( 2 e. NN0 /\ ( # ` W ) e. NN0 ) ) |
| 16 | nn0sub | |- ( ( 2 e. NN0 /\ ( # ` W ) e. NN0 ) -> ( 2 <_ ( # ` W ) <-> ( ( # ` W ) - 2 ) e. NN0 ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( 2 <_ ( # ` W ) <-> ( ( # ` W ) - 2 ) e. NN0 ) ) |
| 18 | 12 17 | mpbid | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. NN0 ) |
| 19 | 2 18 | sylan | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. NN0 ) |
| 20 | 0red | |- ( ( # ` W ) e. ZZ -> 0 e. RR ) |
|
| 21 | 1red | |- ( ( # ` W ) e. ZZ -> 1 e. RR ) |
|
| 22 | zre | |- ( ( # ` W ) e. ZZ -> ( # ` W ) e. RR ) |
|
| 23 | 20 21 22 | 3jca | |- ( ( # ` W ) e. ZZ -> ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) ) |
| 24 | 0lt1 | |- 0 < 1 |
|
| 25 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) -> ( ( 0 < 1 /\ 1 < ( # ` W ) ) -> 0 < ( # ` W ) ) ) |
|
| 26 | 25 | expd | |- ( ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) -> ( 0 < 1 -> ( 1 < ( # ` W ) -> 0 < ( # ` W ) ) ) ) |
| 27 | 23 24 26 | mpisyl | |- ( ( # ` W ) e. ZZ -> ( 1 < ( # ` W ) -> 0 < ( # ` W ) ) ) |
| 28 | elnnz | |- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. ZZ /\ 0 < ( # ` W ) ) ) |
|
| 29 | 28 | simplbi2 | |- ( ( # ` W ) e. ZZ -> ( 0 < ( # ` W ) -> ( # ` W ) e. NN ) ) |
| 30 | 27 29 | syld | |- ( ( # ` W ) e. ZZ -> ( 1 < ( # ` W ) -> ( # ` W ) e. NN ) ) |
| 31 | 4 30 | syl | |- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) -> ( # ` W ) e. NN ) ) |
| 32 | 31 | imp | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 33 | fzo0end | |- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 35 | nn0cn | |- ( ( # ` W ) e. NN0 -> ( # ` W ) e. CC ) |
|
| 36 | 2cn | |- 2 e. CC |
|
| 37 | 36 | a1i | |- ( ( # ` W ) e. NN0 -> 2 e. CC ) |
| 38 | 1cnd | |- ( ( # ` W ) e. NN0 -> 1 e. CC ) |
|
| 39 | 35 37 38 | 3jca | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) ) |
| 40 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 41 | 40 | a1i | |- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> 1 = ( 2 - 1 ) ) |
| 42 | 41 | oveq2d | |- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( # ` W ) - 1 ) = ( ( # ` W ) - ( 2 - 1 ) ) ) |
| 43 | subsub | |- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( # ` W ) - ( 2 - 1 ) ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
|
| 44 | 42 43 | eqtrd | |- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( # ` W ) - 1 ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
| 45 | 39 44 | syl | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 1 ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
| 46 | 45 | eqcomd | |- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - 1 ) ) |
| 47 | 46 | eleq1d | |- ( ( # ` W ) e. NN0 -> ( ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 48 | 47 | adantr | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 49 | 34 48 | mpbird | |- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 50 | 2 49 | sylan | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 51 | 1 19 50 | 3jca | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W e. Word V /\ ( ( # ` W ) - 2 ) e. NN0 /\ ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 52 | swrds2 | |- ( ( W e. Word V /\ ( ( # ` W ) - 2 ) e. NN0 /\ ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) "> ) |
|
| 53 | 51 52 | syl | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) "> ) |
| 54 | 35 36 | jctir | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) e. CC /\ 2 e. CC ) ) |
| 55 | npcan | |- ( ( ( # ` W ) e. CC /\ 2 e. CC ) -> ( ( ( # ` W ) - 2 ) + 2 ) = ( # ` W ) ) |
|
| 56 | 55 | eqcomd | |- ( ( ( # ` W ) e. CC /\ 2 e. CC ) -> ( # ` W ) = ( ( ( # ` W ) - 2 ) + 2 ) ) |
| 57 | 2 54 56 | 3syl | |- ( W e. Word V -> ( # ` W ) = ( ( ( # ` W ) - 2 ) + 2 ) ) |
| 58 | 57 | adantr | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( # ` W ) = ( ( ( # ` W ) - 2 ) + 2 ) ) |
| 59 | 58 | opeq2d | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> <. ( ( # ` W ) - 2 ) , ( # ` W ) >. = <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) |
| 60 | 59 | oveq2d | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( W substr <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) ) |
| 61 | eqidd | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W ` ( ( # ` W ) - 2 ) ) = ( W ` ( ( # ` W ) - 2 ) ) ) |
|
| 62 | lsw | |- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
|
| 63 | 39 43 | syl | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - ( 2 - 1 ) ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
| 64 | 63 | eqcomd | |- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - ( 2 - 1 ) ) ) |
| 65 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 66 | 65 | a1i | |- ( ( # ` W ) e. NN0 -> ( 2 - 1 ) = 1 ) |
| 67 | 66 | oveq2d | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - ( 2 - 1 ) ) = ( ( # ` W ) - 1 ) ) |
| 68 | 64 67 | eqtrd | |- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - 1 ) ) |
| 69 | 2 68 | syl | |- ( W e. Word V -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - 1 ) ) |
| 70 | 69 | eqcomd | |- ( W e. Word V -> ( ( # ` W ) - 1 ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
| 71 | 70 | fveq2d | |- ( W e. Word V -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) ) |
| 72 | 62 71 | eqtrd | |- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) ) |
| 73 | 72 | adantr | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( lastS ` W ) = ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) ) |
| 74 | 61 73 | s2eqd | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> = <" ( W ` ( ( # ` W ) - 2 ) ) ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) "> ) |
| 75 | 53 60 74 | 3eqtr4d | |- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> ) |