This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two length 2 words are equal iff the corresponding singleton words consisting of their symbols are equal. (Contributed by Alexander van der Vekens, 24-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s2eq2s1eq | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( <" A B "> = <" C D "> <-> ( <" A "> = <" C "> /\ <" B "> = <" D "> ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 | |- <" A B "> = ( <" A "> ++ <" B "> ) |
|
| 2 | 1 | a1i | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> <" A B "> = ( <" A "> ++ <" B "> ) ) |
| 3 | df-s2 | |- <" C D "> = ( <" C "> ++ <" D "> ) |
|
| 4 | 3 | a1i | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> <" C D "> = ( <" C "> ++ <" D "> ) ) |
| 5 | 2 4 | eqeq12d | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( <" A B "> = <" C D "> <-> ( <" A "> ++ <" B "> ) = ( <" C "> ++ <" D "> ) ) ) |
| 6 | s1cl | |- ( A e. V -> <" A "> e. Word V ) |
|
| 7 | s1cl | |- ( B e. V -> <" B "> e. Word V ) |
|
| 8 | 6 7 | anim12i | |- ( ( A e. V /\ B e. V ) -> ( <" A "> e. Word V /\ <" B "> e. Word V ) ) |
| 9 | 8 | adantr | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( <" A "> e. Word V /\ <" B "> e. Word V ) ) |
| 10 | s1cl | |- ( C e. V -> <" C "> e. Word V ) |
|
| 11 | s1cl | |- ( D e. V -> <" D "> e. Word V ) |
|
| 12 | 10 11 | anim12i | |- ( ( C e. V /\ D e. V ) -> ( <" C "> e. Word V /\ <" D "> e. Word V ) ) |
| 13 | 12 | adantl | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( <" C "> e. Word V /\ <" D "> e. Word V ) ) |
| 14 | s1len | |- ( # ` <" A "> ) = 1 |
|
| 15 | s1len | |- ( # ` <" C "> ) = 1 |
|
| 16 | 14 15 | eqtr4i | |- ( # ` <" A "> ) = ( # ` <" C "> ) |
| 17 | 16 | a1i | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( # ` <" A "> ) = ( # ` <" C "> ) ) |
| 18 | ccatopth | |- ( ( ( <" A "> e. Word V /\ <" B "> e. Word V ) /\ ( <" C "> e. Word V /\ <" D "> e. Word V ) /\ ( # ` <" A "> ) = ( # ` <" C "> ) ) -> ( ( <" A "> ++ <" B "> ) = ( <" C "> ++ <" D "> ) <-> ( <" A "> = <" C "> /\ <" B "> = <" D "> ) ) ) |
|
| 19 | 9 13 17 18 | syl3anc | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( <" A "> ++ <" B "> ) = ( <" C "> ++ <" D "> ) <-> ( <" A "> = <" C "> /\ <" B "> = <" D "> ) ) ) |
| 20 | 5 19 | bitrd | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( <" A B "> = <" C D "> <-> ( <" A "> = <" C "> /\ <" B "> = <" D "> ) ) ) |