This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tg2 | |- ( ( A e. ( topGen ` B ) /\ C e. A ) -> E. x e. B ( C e. x /\ x C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | |- ( A e. ( topGen ` B ) -> B e. dom topGen ) |
|
| 2 | eltg2b | |- ( B e. dom topGen -> ( A e. ( topGen ` B ) <-> A. y e. A E. x e. B ( y e. x /\ x C_ A ) ) ) |
|
| 3 | eleq1 | |- ( y = C -> ( y e. x <-> C e. x ) ) |
|
| 4 | 3 | anbi1d | |- ( y = C -> ( ( y e. x /\ x C_ A ) <-> ( C e. x /\ x C_ A ) ) ) |
| 5 | 4 | rexbidv | |- ( y = C -> ( E. x e. B ( y e. x /\ x C_ A ) <-> E. x e. B ( C e. x /\ x C_ A ) ) ) |
| 6 | 5 | rspccv | |- ( A. y e. A E. x e. B ( y e. x /\ x C_ A ) -> ( C e. A -> E. x e. B ( C e. x /\ x C_ A ) ) ) |
| 7 | 2 6 | biimtrdi | |- ( B e. dom topGen -> ( A e. ( topGen ` B ) -> ( C e. A -> E. x e. B ( C e. x /\ x C_ A ) ) ) ) |
| 8 | 1 7 | mpcom | |- ( A e. ( topGen ` B ) -> ( C e. A -> E. x e. B ( C e. x /\ x C_ A ) ) ) |
| 9 | 8 | imp | |- ( ( A e. ( topGen ` B ) /\ C e. A ) -> E. x e. B ( C e. x /\ x C_ A ) ) |