This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | is2ndc | |- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2ndc | |- 2ndc = { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } |
|
| 2 | 1 | eleq2i | |- ( J e. 2ndc <-> J e. { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } ) |
| 3 | simpr | |- ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> ( topGen ` x ) = J ) |
|
| 4 | fvex | |- ( topGen ` x ) e. _V |
|
| 5 | 3 4 | eqeltrrdi | |- ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. _V ) |
| 7 | eqeq2 | |- ( j = J -> ( ( topGen ` x ) = j <-> ( topGen ` x ) = J ) ) |
|
| 8 | 7 | anbi2d | |- ( j = J -> ( ( x ~<_ _om /\ ( topGen ` x ) = j ) <-> ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) |
| 9 | 8 | rexbidv | |- ( j = J -> ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) |
| 10 | 6 9 | elab3 | |- ( J e. { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
| 11 | 2 10 | bitri | |- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |