This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndctop | |- ( J e. 2ndc -> J e. Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | |- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
|
| 2 | simprr | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = J ) |
|
| 3 | tgcl | |- ( x e. TopBases -> ( topGen ` x ) e. Top ) |
|
| 4 | 3 | adantr | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) e. Top ) |
| 5 | 2 4 | eqeltrrd | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> J e. Top ) |
| 6 | 5 | rexlimiva | |- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. Top ) |
| 7 | 1 6 | sylbi | |- ( J e. 2ndc -> J e. Top ) |