This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group ZZ / n ZZ is cyclic for all n (including n = 0 ). (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zncyg.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| Assertion | zncyg | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncyg.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | 1 | zncrng | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 3 | crngring | ⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Ring ) |
| 5 | ringgrp | ⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Grp ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) | |
| 9 | 7 8 | ringidcl | ⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
| 10 | 4 9 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
| 11 | eqid | ⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) | |
| 12 | eqid | ⊢ ( .g ‘ 𝑌 ) = ( .g ‘ 𝑌 ) | |
| 13 | 11 12 8 | zrhval2 | ⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
| 15 | 14 | rneqd | ⊢ ( 𝑁 ∈ ℕ0 → ran ( ℤRHom ‘ 𝑌 ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
| 16 | 1 7 11 | znzrhfo | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 17 | forn | ⊢ ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) → ran ( ℤRHom ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ran ( ℤRHom ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 19 | 15 18 | eqtr3d | ⊢ ( 𝑁 ∈ ℕ0 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( Base ‘ 𝑌 ) ) |
| 20 | oveq2 | ⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) = ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) | |
| 21 | 20 | mpteq2dv | ⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
| 22 | 21 | rneqd | ⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
| 23 | 22 | eqeq1d | ⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( Base ‘ 𝑌 ) ) ) |
| 24 | 23 | rspcev | ⊢ ( ( ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( Base ‘ 𝑌 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑌 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ) |
| 25 | 10 19 24 | syl2anc | ⊢ ( 𝑁 ∈ ℕ0 → ∃ 𝑥 ∈ ( Base ‘ 𝑌 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ) |
| 26 | 7 12 | iscyg | ⊢ ( 𝑌 ∈ CycGrp ↔ ( 𝑌 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑌 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ) ) |
| 27 | 6 25 26 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp ) |