This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| zrhval2.m | ⊢ · = ( .g ‘ 𝑅 ) | ||
| zrhval2.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | zrhval2 | ⊢ ( 𝑅 ∈ Ring → 𝐿 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | zrhval2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| 3 | zrhval2.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 | zrhval | ⊢ 𝐿 = ∪ ( ℤring RingHom 𝑅 ) |
| 5 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | |
| 6 | 2 5 3 | mulgrhm2 | ⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) } ) |
| 7 | 6 | unieqd | ⊢ ( 𝑅 ∈ Ring → ∪ ( ℤring RingHom 𝑅 ) = ∪ { ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) } ) |
| 8 | zex | ⊢ ℤ ∈ V | |
| 9 | 8 | mptex | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ∈ V |
| 10 | 9 | unisn | ⊢ ∪ { ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) } = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) |
| 11 | 7 10 | eqtrdi | ⊢ ( 𝑅 ∈ Ring → ∪ ( ℤring RingHom 𝑅 ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
| 12 | 4 11 | eqtrid | ⊢ ( 𝑅 ∈ Ring → 𝐿 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |