This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group ZZ / n ZZ is cyclic for all n (including n = 0 ). (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zncyg.y | |- Y = ( Z/nZ ` N ) |
|
| Assertion | zncyg | |- ( N e. NN0 -> Y e. CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncyg.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | 1 | zncrng | |- ( N e. NN0 -> Y e. CRing ) |
| 3 | crngring | |- ( Y e. CRing -> Y e. Ring ) |
|
| 4 | 2 3 | syl | |- ( N e. NN0 -> Y e. Ring ) |
| 5 | ringgrp | |- ( Y e. Ring -> Y e. Grp ) |
|
| 6 | 4 5 | syl | |- ( N e. NN0 -> Y e. Grp ) |
| 7 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 8 | eqid | |- ( 1r ` Y ) = ( 1r ` Y ) |
|
| 9 | 7 8 | ringidcl | |- ( Y e. Ring -> ( 1r ` Y ) e. ( Base ` Y ) ) |
| 10 | 4 9 | syl | |- ( N e. NN0 -> ( 1r ` Y ) e. ( Base ` Y ) ) |
| 11 | eqid | |- ( ZRHom ` Y ) = ( ZRHom ` Y ) |
|
| 12 | eqid | |- ( .g ` Y ) = ( .g ` Y ) |
|
| 13 | 11 12 8 | zrhval2 | |- ( Y e. Ring -> ( ZRHom ` Y ) = ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) ) |
| 14 | 4 13 | syl | |- ( N e. NN0 -> ( ZRHom ` Y ) = ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) ) |
| 15 | 14 | rneqd | |- ( N e. NN0 -> ran ( ZRHom ` Y ) = ran ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) ) |
| 16 | 1 7 11 | znzrhfo | |- ( N e. NN0 -> ( ZRHom ` Y ) : ZZ -onto-> ( Base ` Y ) ) |
| 17 | forn | |- ( ( ZRHom ` Y ) : ZZ -onto-> ( Base ` Y ) -> ran ( ZRHom ` Y ) = ( Base ` Y ) ) |
|
| 18 | 16 17 | syl | |- ( N e. NN0 -> ran ( ZRHom ` Y ) = ( Base ` Y ) ) |
| 19 | 15 18 | eqtr3d | |- ( N e. NN0 -> ran ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) = ( Base ` Y ) ) |
| 20 | oveq2 | |- ( x = ( 1r ` Y ) -> ( n ( .g ` Y ) x ) = ( n ( .g ` Y ) ( 1r ` Y ) ) ) |
|
| 21 | 20 | mpteq2dv | |- ( x = ( 1r ` Y ) -> ( n e. ZZ |-> ( n ( .g ` Y ) x ) ) = ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) ) |
| 22 | 21 | rneqd | |- ( x = ( 1r ` Y ) -> ran ( n e. ZZ |-> ( n ( .g ` Y ) x ) ) = ran ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) ) |
| 23 | 22 | eqeq1d | |- ( x = ( 1r ` Y ) -> ( ran ( n e. ZZ |-> ( n ( .g ` Y ) x ) ) = ( Base ` Y ) <-> ran ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) = ( Base ` Y ) ) ) |
| 24 | 23 | rspcev | |- ( ( ( 1r ` Y ) e. ( Base ` Y ) /\ ran ( n e. ZZ |-> ( n ( .g ` Y ) ( 1r ` Y ) ) ) = ( Base ` Y ) ) -> E. x e. ( Base ` Y ) ran ( n e. ZZ |-> ( n ( .g ` Y ) x ) ) = ( Base ` Y ) ) |
| 25 | 10 19 24 | syl2anc | |- ( N e. NN0 -> E. x e. ( Base ` Y ) ran ( n e. ZZ |-> ( n ( .g ` Y ) x ) ) = ( Base ` Y ) ) |
| 26 | 7 12 | iscyg | |- ( Y e. CycGrp <-> ( Y e. Grp /\ E. x e. ( Base ` Y ) ran ( n e. ZZ |-> ( n ( .g ` Y ) x ) ) = ( Base ` Y ) ) ) |
| 27 | 6 25 26 | sylanbrc | |- ( N e. NN0 -> Y e. CycGrp ) |