This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | iscyg | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 4 | 3 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = ( .g ‘ 𝐺 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = · ) |
| 7 | 6 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 𝑛 · 𝑥 ) ) |
| 8 | 7 | mpteq2dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) |
| 9 | 8 | rneqd | ⊢ ( 𝑔 = 𝐺 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) |
| 10 | 9 4 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) ) = ( Base ‘ 𝑔 ) ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| 11 | 4 10 | rexeqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) ) = ( Base ‘ 𝑔 ) ↔ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| 12 | df-cyg | ⊢ CycGrp = { 𝑔 ∈ Grp ∣ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) ) = ( Base ‘ 𝑔 ) } | |
| 13 | 11 12 | elrab2 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |