This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgass2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mulgass2.m | ⊢ · = ( .g ‘ 𝑅 ) | ||
| mulgass2.t | ⊢ × = ( .r ‘ 𝑅 ) | ||
| Assertion | mulgass2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgass2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mulgass2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| 3 | mulgass2.t | ⊢ × = ( .r ‘ 𝑅 ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 0 · 𝑋 ) × 𝑌 ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 0 · 𝑋 ) × 𝑌 ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝑋 ) = ( 𝑦 · 𝑋 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) |
| 10 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝑋 ) = ( ( 𝑦 + 1 ) · 𝑋 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) ) |
| 14 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝑋 ) = ( - 𝑦 · 𝑋 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( - 𝑦 · 𝑋 ) × 𝑌 ) ) |
| 18 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑥 = - 𝑦 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 20 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 𝑁 · 𝑋 ) × 𝑌 ) ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) | |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) |
| 24 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 25 | 1 3 24 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) × 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) × 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 27 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 28 | 1 24 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 29 | 27 28 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) × 𝑌 ) = ( ( 0g ‘ 𝑅 ) × 𝑌 ) ) |
| 31 | 1 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 32 | 31 | 3com23 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 33 | 1 24 2 | mulg0 | ⊢ ( ( 𝑋 × 𝑌 ) ∈ 𝐵 → ( 0 · ( 𝑋 × 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
| 34 | 32 33 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝑋 × 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
| 35 | 26 30 34 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) × 𝑌 ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) |
| 36 | oveq1 | ⊢ ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) | |
| 37 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Ring ) | |
| 38 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Grp ) |
| 40 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 41 | 40 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
| 42 | 27 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 43 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 44 | 1 2 43 | mulgp1 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 45 | 39 41 42 44 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) ) |
| 47 | 38 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Grp ) |
| 49 | 1 2 | mulgcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 50 | 48 41 42 49 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 51 | simpl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) | |
| 52 | 1 43 3 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 53 | 37 50 42 51 52 | syl13anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 54 | 46 53 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 55 | 32 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 56 | 1 2 43 | mulgp1 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝑋 × 𝑌 ) ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 57 | 39 41 55 56 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 58 | 54 57 | eqeq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ↔ ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) ) |
| 59 | 36 58 | imbitrrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) |
| 60 | 59 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 61 | fveq2 | ⊢ ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) | |
| 62 | 47 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑅 ∈ Grp ) |
| 63 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 64 | 63 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
| 65 | 27 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
| 66 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 67 | 1 2 66 | mulgneg | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 68 | 62 64 65 67 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 69 | 68 | oveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) × 𝑌 ) ) |
| 70 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑅 ∈ Ring ) | |
| 71 | 62 64 65 49 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 72 | simpl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑌 ∈ 𝐵 ) | |
| 73 | 1 3 66 70 71 72 | ringmneg1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) × 𝑌 ) = ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) ) |
| 74 | 69 73 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) ) |
| 75 | 32 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 76 | 1 2 66 | mulgneg | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝑋 × 𝑌 ) ∈ 𝐵 ) → ( - 𝑦 · ( 𝑋 × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 77 | 62 64 75 76 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · ( 𝑋 × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 78 | 74 77 | eqeq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ↔ ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 79 | 61 78 | imbitrrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 80 | 79 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 81 | 7 11 15 19 23 35 60 80 | zindd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) |
| 82 | 81 | 3exp | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) ) ) |
| 83 | 82 | com24 | ⊢ ( 𝑅 ∈ Ring → ( 𝑁 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) ) ) |
| 84 | 83 | 3imp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) |