This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns a ring into an associative algebra over ZZ . Also see zlmlmod . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmassa.w | |- W = ( ZMod ` G ) |
|
| Assertion | zlmassa | |- ( G e. Ring <-> W e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmassa.w | |- W = ( ZMod ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 1 2 | zlmbas | |- ( Base ` G ) = ( Base ` W ) |
| 4 | 3 | a1i | |- ( G e. Ring -> ( Base ` G ) = ( Base ` W ) ) |
| 5 | 1 | zlmsca | |- ( G e. Ring -> ZZring = ( Scalar ` W ) ) |
| 6 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 7 | 6 | a1i | |- ( G e. Ring -> ZZ = ( Base ` ZZring ) ) |
| 8 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 9 | 1 8 | zlmvsca | |- ( .g ` G ) = ( .s ` W ) |
| 10 | 9 | a1i | |- ( G e. Ring -> ( .g ` G ) = ( .s ` W ) ) |
| 11 | eqid | |- ( .r ` G ) = ( .r ` G ) |
|
| 12 | 1 11 | zlmmulr | |- ( .r ` G ) = ( .r ` W ) |
| 13 | 12 | a1i | |- ( G e. Ring -> ( .r ` G ) = ( .r ` W ) ) |
| 14 | ringabl | |- ( G e. Ring -> G e. Abel ) |
|
| 15 | 1 | zlmlmod | |- ( G e. Abel <-> W e. LMod ) |
| 16 | 14 15 | sylib | |- ( G e. Ring -> W e. LMod ) |
| 17 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 18 | 1 17 | zlmplusg | |- ( +g ` G ) = ( +g ` W ) |
| 19 | 3 18 12 | ringprop | |- ( G e. Ring <-> W e. Ring ) |
| 20 | 19 | biimpi | |- ( G e. Ring -> W e. Ring ) |
| 21 | 2 8 11 | mulgass2 | |- ( ( G e. Ring /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( .g ` G ) y ) ( .r ` G ) z ) = ( x ( .g ` G ) ( y ( .r ` G ) z ) ) ) |
| 22 | 2 8 11 | mulgass3 | |- ( ( G e. Ring /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( y ( .r ` G ) ( x ( .g ` G ) z ) ) = ( x ( .g ` G ) ( y ( .r ` G ) z ) ) ) |
| 23 | 4 5 7 10 13 16 20 21 22 | isassad | |- ( G e. Ring -> W e. AssAlg ) |
| 24 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 25 | 24 19 | sylibr | |- ( W e. AssAlg -> G e. Ring ) |
| 26 | 23 25 | impbii | |- ( G e. Ring <-> W e. AssAlg ) |