This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns a ring into an associative algebra over ZZ . Also see zlmlmod . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmassa.w | ||
| Assertion | zlmassa |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmassa.w | ||
| 2 | eqid | ||
| 3 | 1 2 | zlmbas | |
| 4 | 3 | a1i | |
| 5 | 1 | zlmsca | |
| 6 | zringbas | ||
| 7 | 6 | a1i | |
| 8 | eqid | ||
| 9 | 1 8 | zlmvsca | |
| 10 | 9 | a1i | |
| 11 | eqid | ||
| 12 | 1 11 | zlmmulr | |
| 13 | 12 | a1i | |
| 14 | ringabl | ||
| 15 | 1 | zlmlmod | |
| 16 | 14 15 | sylib | |
| 17 | eqid | ||
| 18 | 1 17 | zlmplusg | |
| 19 | 3 18 12 | ringprop | |
| 20 | 19 | biimpi | |
| 21 | 2 8 11 | mulgass2 | |
| 22 | 2 8 11 | mulgass3 | |
| 23 | 4 5 7 10 13 16 20 21 22 | isassad | |
| 24 | assaring | ||
| 25 | 24 19 | sylibr | |
| 26 | 23 25 | impbii |