This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringprop.b | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) | |
| ringprop.p | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) | ||
| ringprop.m | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐿 ) | ||
| Assertion | ringprop | ⊢ ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringprop.b | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) | |
| 2 | ringprop.p | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) | |
| 3 | ringprop.m | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐿 ) | |
| 4 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) | |
| 5 | 1 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 6 | 2 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) |
| 7 | 6 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 8 | 3 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) |
| 9 | 8 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 10 | 4 5 7 9 | ringpropd | ⊢ ( ⊤ → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 11 | 10 | mptru | ⊢ ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) |