This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulasslem3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 3 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 4 | mulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
| 7 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 8 | rexmul | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 · 𝐵 ) · 𝐶 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 · 𝐵 ) · 𝐶 ) ) |
| 10 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) | |
| 11 | rexmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 · 𝐶 ) ∈ ℝ ) → ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
| 13 | 12 | anassrs | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
| 14 | 6 9 13 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) ) |
| 15 | rexmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) ) |
| 18 | rexmul | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) | |
| 19 | 18 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) ) |
| 21 | 14 17 20 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 22 | 21 | adantll | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 23 | oveq2 | ⊢ ( 𝐶 = +∞ → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐵 ) ·e +∞ ) ) | |
| 24 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 𝐴 ∈ ℝ* ) | |
| 25 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 𝐵 ∈ ℝ* ) | |
| 26 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
| 28 | xmulgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) | |
| 29 | 28 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 30 | xmulpnf1 | ⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 0 < ( 𝐴 ·e 𝐵 ) ) → ( ( 𝐴 ·e 𝐵 ) ·e +∞ ) = +∞ ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( ( 𝐴 ·e 𝐵 ) ·e +∞ ) = +∞ ) |
| 32 | 23 31 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = +∞ ) |
| 33 | simpl1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ) | |
| 34 | xmulpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐴 ·e +∞ ) = +∞ ) |
| 36 | 32 35 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
| 37 | oveq2 | ⊢ ( 𝐶 = +∞ → ( 𝐵 ·e 𝐶 ) = ( 𝐵 ·e +∞ ) ) | |
| 38 | xmulpnf1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( 𝐵 ·e +∞ ) = +∞ ) | |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐵 ·e +∞ ) = +∞ ) |
| 40 | 37 39 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐵 ·e 𝐶 ) = +∞ ) |
| 41 | 40 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e +∞ ) ) |
| 42 | 36 41 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 43 | 42 | adantlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 44 | simpl3r | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < 𝐶 ) | |
| 45 | xmulasslem2 | ⊢ ( ( 0 < 𝐶 ∧ 𝐶 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 46 | 44 45 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 47 | simp3l | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 𝐶 ∈ ℝ* ) | |
| 48 | elxr | ⊢ ( 𝐶 ∈ ℝ* ↔ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) | |
| 49 | 47 48 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
| 51 | 22 43 46 50 | mpjao3dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 52 | 51 | anassrs | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 53 | xmulpnf2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( +∞ ·e 𝐶 ) = +∞ ) | |
| 54 | 53 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e 𝐶 ) = +∞ ) |
| 55 | 34 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐴 ·e +∞ ) = +∞ ) |
| 56 | 54 55 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( +∞ ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
| 58 | oveq2 | ⊢ ( 𝐵 = +∞ → ( 𝐴 ·e 𝐵 ) = ( 𝐴 ·e +∞ ) ) | |
| 59 | 58 55 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
| 60 | 59 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) |
| 61 | oveq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) | |
| 62 | 61 54 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( 𝐵 ·e 𝐶 ) = +∞ ) |
| 63 | 62 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e +∞ ) ) |
| 64 | 57 60 63 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 65 | 64 | adantlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 66 | simpl2r | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) → 0 < 𝐵 ) | |
| 67 | xmulasslem2 | ⊢ ( ( 0 < 𝐵 ∧ 𝐵 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 68 | 66 67 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 69 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 70 | 25 69 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 72 | 52 65 68 71 | mpjao3dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 73 | simpl3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) | |
| 74 | 73 53 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( +∞ ·e 𝐶 ) = +∞ ) |
| 75 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 𝐵 ) = ( +∞ ·e 𝐵 ) ) | |
| 76 | xmulpnf2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( +∞ ·e 𝐵 ) = +∞ ) | |
| 77 | 76 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e 𝐵 ) = +∞ ) |
| 78 | 75 77 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
| 79 | 78 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) |
| 80 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( +∞ ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 81 | xmulcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) | |
| 82 | 25 47 81 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 83 | xmulgt0 | ⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < ( 𝐵 ·e 𝐶 ) ) | |
| 84 | 83 | 3adant1 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < ( 𝐵 ·e 𝐶 ) ) |
| 85 | xmulpnf2 | ⊢ ( ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ 0 < ( 𝐵 ·e 𝐶 ) ) → ( +∞ ·e ( 𝐵 ·e 𝐶 ) ) = +∞ ) | |
| 86 | 82 84 85 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
| 87 | 80 86 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
| 88 | 74 79 87 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 89 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < 𝐴 ) | |
| 90 | xmulasslem2 | ⊢ ( ( 0 < 𝐴 ∧ 𝐴 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 91 | 89 90 | sylan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 92 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 93 | 24 92 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 94 | 72 88 91 93 | mpjao3dan | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |