This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulgt0 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 0 < 𝐴 ) | |
| 2 | simpr | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → 0 < 𝐵 ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) |
| 4 | mulgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) | |
| 5 | 4 | an4s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
| 6 | 5 | ancoms | ⊢ ( ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
| 7 | rexmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 9 | 6 8 | breqtrrd | ⊢ ( ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 10 | 3 9 | sylan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 11 | 10 | anassrs | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 12 | 0ltpnf | ⊢ 0 < +∞ | |
| 13 | oveq2 | ⊢ ( 𝐵 = +∞ → ( 𝐴 ·e 𝐵 ) = ( 𝐴 ·e +∞ ) ) | |
| 14 | xmulpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) | |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 𝐴 ·e +∞ ) = +∞ ) |
| 16 | 13 15 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
| 17 | 12 16 | breqtrrid | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐵 = +∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 18 | 17 | adantlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = +∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 19 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → 0 < 𝐵 ) | |
| 20 | xmulasslem2 | ⊢ ( ( 0 < 𝐵 ∧ 𝐵 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) | |
| 21 | 19 20 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 22 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 23 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 26 | 11 18 21 25 | mpjao3dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 27 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 𝐵 ) = ( +∞ ·e 𝐵 ) ) | |
| 28 | xmulpnf2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( +∞ ·e 𝐵 ) = +∞ ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( +∞ ·e 𝐵 ) = +∞ ) |
| 30 | 27 29 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
| 31 | 12 30 | breqtrrid | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 = +∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 32 | xmulasslem2 | ⊢ ( ( 0 < 𝐴 ∧ 𝐴 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) | |
| 33 | 32 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
| 34 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) | |
| 35 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 36 | 34 35 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 37 | 26 31 33 36 | mpjao3dan | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |