This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass which has to avoid the "undefined" combinations +oo +e -oo and -oo +e +oo . The equivalent "undefined" expression here would be 0 *e +oo , but since this is defined to equal 0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulass | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·e 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 3 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = -𝑒 𝐴 → ( 𝑥 ·e 𝐵 ) = ( -𝑒 𝐴 ·e 𝐵 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑥 = -𝑒 𝐴 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = -𝑒 𝐴 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝑥 = -𝑒 𝐴 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 9 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) | |
| 10 | xmulcl | ⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) | |
| 11 | 9 10 | stoic3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
| 12 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 13 | xmulcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) | |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 15 | xmulcl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
| 17 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e 𝐵 ) ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 19 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 21 | 18 20 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e -𝑒 𝐵 ) ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑦 = -𝑒 𝐵 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) ) |
| 24 | oveq1 | ⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑦 ·e 𝐶 ) = ( -𝑒 𝐵 ·e 𝐶 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑦 = -𝑒 𝐵 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) ) ) |
| 27 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝑥 ∈ ℝ* ) | |
| 28 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝐵 ∈ ℝ* ) | |
| 29 | xmulcl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ·e 𝐵 ) ∈ ℝ* ) | |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e 𝐵 ) ∈ ℝ* ) |
| 31 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝐶 ∈ ℝ* ) | |
| 32 | xmulcl | ⊢ ( ( ( 𝑥 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
| 34 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 35 | xmulcl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) | |
| 36 | 27 34 35 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
| 37 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) | |
| 38 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e 𝐶 ) ) | |
| 39 | 38 | oveq2d | ⊢ ( 𝑧 = 𝐶 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 40 | 37 39 | eqeq12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) ) |
| 41 | oveq2 | ⊢ ( 𝑧 = -𝑒 𝐶 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) ) | |
| 42 | oveq2 | ⊢ ( 𝑧 = -𝑒 𝐶 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e -𝑒 𝐶 ) ) | |
| 43 | 42 | oveq2d | ⊢ ( 𝑧 = -𝑒 𝐶 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) ) |
| 44 | 41 43 | eqeq12d | ⊢ ( 𝑧 = -𝑒 𝐶 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) ) ) |
| 45 | 27 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝑥 ∈ ℝ* ) |
| 46 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝑦 ∈ ℝ* ) | |
| 47 | xmulcl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) | |
| 48 | 45 46 47 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
| 49 | 31 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝐶 ∈ ℝ* ) |
| 50 | xmulcl | ⊢ ( ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ∈ ℝ* ) | |
| 51 | 48 49 50 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ∈ ℝ* ) |
| 52 | xmulcl | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) | |
| 53 | 46 49 52 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) |
| 54 | xmulcl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ∈ ℝ* ) | |
| 55 | 45 53 54 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ∈ ℝ* ) |
| 56 | xmulasslem3 | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ* ∧ 0 < 𝑧 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) | |
| 57 | 56 | ad4ant234 | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ* ∧ 0 < 𝑧 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
| 58 | xmul01 | ⊢ ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = 0 ) | |
| 59 | 48 58 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = 0 ) |
| 60 | xmul01 | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ·e 0 ) = 0 ) | |
| 61 | 45 60 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e 0 ) = 0 ) |
| 62 | 59 61 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e 0 ) ) |
| 63 | xmul01 | ⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 ·e 0 ) = 0 ) | |
| 64 | 63 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e 0 ) = 0 ) |
| 65 | 64 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e 0 ) ) = ( 𝑥 ·e 0 ) ) |
| 66 | 62 65 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) |
| 67 | oveq2 | ⊢ ( 𝑧 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e 0 ) ) | |
| 68 | oveq2 | ⊢ ( 𝑧 = 0 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e 0 ) ) | |
| 69 | 68 | oveq2d | ⊢ ( 𝑧 = 0 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) |
| 70 | 67 69 | eqeq12d | ⊢ ( 𝑧 = 0 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) ) |
| 71 | 66 70 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑧 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) ) |
| 72 | xmulneg2 | ⊢ ( ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) | |
| 73 | 48 49 72 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) |
| 74 | xmulneg2 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑦 ·e -𝑒 𝐶 ) = -𝑒 ( 𝑦 ·e 𝐶 ) ) | |
| 75 | 46 49 74 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e -𝑒 𝐶 ) = -𝑒 ( 𝑦 ·e 𝐶 ) ) |
| 76 | 75 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) = ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) ) |
| 77 | xmulneg2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) | |
| 78 | 45 53 77 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 79 | 76 78 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 80 | 40 44 51 55 49 57 71 73 79 | xmulasslem | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 81 | xmul02 | ⊢ ( 𝐶 ∈ ℝ* → ( 0 ·e 𝐶 ) = 0 ) | |
| 82 | 81 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e 𝐶 ) = 0 ) |
| 83 | 82 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 0 ·e 𝐶 ) = 0 ) |
| 84 | 60 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e 0 ) = 0 ) |
| 85 | 83 84 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 0 ·e 𝐶 ) = ( 𝑥 ·e 0 ) ) |
| 86 | 84 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
| 87 | 83 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( 0 ·e 𝐶 ) ) = ( 𝑥 ·e 0 ) ) |
| 88 | 85 86 87 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) |
| 89 | oveq2 | ⊢ ( 𝑦 = 0 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e 0 ) ) | |
| 90 | 89 | oveq1d | ⊢ ( 𝑦 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 0 ) ·e 𝐶 ) ) |
| 91 | oveq1 | ⊢ ( 𝑦 = 0 → ( 𝑦 ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) | |
| 92 | 91 | oveq2d | ⊢ ( 𝑦 = 0 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) |
| 93 | 90 92 | eqeq12d | ⊢ ( 𝑦 = 0 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) ) |
| 94 | 88 93 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑦 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) ) |
| 95 | xmulneg2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ·e -𝑒 𝐵 ) = -𝑒 ( 𝑥 ·e 𝐵 ) ) | |
| 96 | 27 28 95 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e -𝑒 𝐵 ) = -𝑒 ( 𝑥 ·e 𝐵 ) ) |
| 97 | 96 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 98 | xmulneg1 | ⊢ ( ( ( 𝑥 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) | |
| 99 | 30 31 98 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 100 | 97 99 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 101 | xmulneg1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐵 ·e 𝐶 ) = -𝑒 ( 𝐵 ·e 𝐶 ) ) | |
| 102 | 28 31 101 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( -𝑒 𝐵 ·e 𝐶 ) = -𝑒 ( 𝐵 ·e 𝐶 ) ) |
| 103 | 102 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) = ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 104 | xmulneg2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 105 | 27 34 104 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 106 | 103 105 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 107 | 21 26 33 36 28 80 94 100 106 | xmulasslem | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 108 | xmul02 | ⊢ ( 𝐵 ∈ ℝ* → ( 0 ·e 𝐵 ) = 0 ) | |
| 109 | 108 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e 𝐵 ) = 0 ) |
| 110 | 109 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
| 111 | xmul02 | ⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → ( 0 ·e ( 𝐵 ·e 𝐶 ) ) = 0 ) | |
| 112 | 14 111 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e ( 𝐵 ·e 𝐶 ) ) = 0 ) |
| 113 | 82 110 112 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 114 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ·e 𝐵 ) = ( 0 ·e 𝐵 ) ) | |
| 115 | 114 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( 0 ·e 𝐵 ) ·e 𝐶 ) ) |
| 116 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 117 | 115 116 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 118 | 113 117 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑥 = 0 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 119 | xmulneg1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) | |
| 120 | 119 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
| 121 | 120 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 122 | xmulneg1 | ⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) | |
| 123 | 9 122 | stoic3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 124 | 121 123 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 125 | xmulneg1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) | |
| 126 | 12 14 125 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 127 | 4 8 11 16 12 107 118 124 126 | xmulasslem | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |