This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 27-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlktovf1o.d | ⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } | |
| wwlktovf1o.r | ⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } | ||
| wwlktovf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) | ||
| Assertion | wwlktovf1 | ⊢ 𝐹 : 𝐷 –1-1→ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlktovf1o.d | ⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } | |
| 2 | wwlktovf1o.r | ⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } | |
| 3 | wwlktovf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) | |
| 4 | 1 2 3 | wwlktovf | ⊢ 𝐹 : 𝐷 ⟶ 𝑅 |
| 5 | fveq1 | ⊢ ( 𝑡 = 𝑥 → ( 𝑡 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) | |
| 6 | fvex | ⊢ ( 𝑥 ‘ 1 ) ∈ V | |
| 7 | 5 3 6 | fvmpt | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ‘ 1 ) ) |
| 8 | fveq1 | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) | |
| 9 | fvex | ⊢ ( 𝑦 ‘ 1 ) ∈ V | |
| 10 | 8 3 9 | fvmpt | ⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 1 ) ) |
| 11 | 7 10 | eqeqan12d | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) |
| 12 | fveqeq2 | ⊢ ( 𝑤 = 𝑥 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ ( ♯ ‘ 𝑥 ) = 2 ) ) | |
| 13 | fveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 0 ) = ( 𝑥 ‘ 0 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑥 ‘ 0 ) = 𝑃 ) ) |
| 15 | fveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) | |
| 16 | 13 15 | preq12d | ⊢ ( 𝑤 = 𝑥 → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } = { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑤 = 𝑥 → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) |
| 18 | 12 14 17 | 3anbi123d | ⊢ ( 𝑤 = 𝑥 → ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 19 | 18 1 | elrab2 | ⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 20 | fveqeq2 | ⊢ ( 𝑤 = 𝑦 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) | |
| 21 | fveq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑦 ‘ 0 ) = 𝑃 ) ) |
| 23 | fveq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) | |
| 24 | 21 23 | preq12d | ⊢ ( 𝑤 = 𝑦 → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } = { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ) |
| 25 | 24 | eleq1d | ⊢ ( 𝑤 = 𝑦 → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) |
| 26 | 20 22 25 | 3anbi123d | ⊢ ( 𝑤 = 𝑦 → ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 27 | 26 1 | elrab2 | ⊢ ( 𝑦 ∈ 𝐷 ↔ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 28 | simpr1 | ⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) → ( ♯ ‘ 𝑥 ) = 2 ) | |
| 29 | simpr1 | ⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → ( ♯ ‘ 𝑦 ) = 2 ) | |
| 30 | 29 | eqcomd | ⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → 2 = ( ♯ ‘ 𝑦 ) ) |
| 31 | 28 30 | sylan9eq | ⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 33 | simpr2 | ⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) → ( 𝑥 ‘ 0 ) = 𝑃 ) | |
| 34 | simpr2 | ⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) | |
| 35 | 34 | eqcomd | ⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → 𝑃 = ( 𝑦 ‘ 0 ) ) |
| 36 | 33 35 | sylan9eq | ⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
| 38 | simpr | ⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) | |
| 39 | oveq2 | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝑥 ) ) = ( 0 ..^ 2 ) ) | |
| 40 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 41 | 39 40 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝑥 ) ) = { 0 , 1 } ) |
| 42 | 41 | raleqdv | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { 0 , 1 } ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) |
| 43 | c0ex | ⊢ 0 ∈ V | |
| 44 | 1ex | ⊢ 1 ∈ V | |
| 45 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 0 ) ) | |
| 46 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 0 ) ) | |
| 47 | 45 46 | eqeq12d | ⊢ ( 𝑖 = 0 → ( ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
| 48 | fveq2 | ⊢ ( 𝑖 = 1 → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 1 ) ) | |
| 49 | fveq2 | ⊢ ( 𝑖 = 1 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 1 ) ) | |
| 50 | 48 49 | eqeq12d | ⊢ ( 𝑖 = 1 → ( ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) |
| 51 | 43 44 47 50 | ralpr | ⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) |
| 52 | 42 51 | bitrdi | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) ) |
| 53 | 52 | 3ad2ant1 | ⊢ ( ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) ) |
| 54 | 53 | ad3antlr | ⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) ) |
| 55 | 37 38 54 | mpbir2and | ⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) |
| 56 | eqwrd | ⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ 𝑦 ∈ Word 𝑉 ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) ) | |
| 57 | 56 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 59 | 32 55 58 | mpbir2and | ⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → 𝑥 = 𝑦 ) |
| 60 | 59 | ex | ⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) → 𝑥 = 𝑦 ) ) |
| 61 | 19 27 60 | syl2anb | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) → 𝑥 = 𝑦 ) ) |
| 62 | 11 61 | sylbid | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 63 | 62 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 64 | dff13 | ⊢ ( 𝐹 : 𝐷 –1-1→ 𝑅 ↔ ( 𝐹 : 𝐷 ⟶ 𝑅 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 65 | 4 63 64 | mpbir2an | ⊢ 𝐹 : 𝐷 –1-1→ 𝑅 |