This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrd2f1tovbij | ⊢ ( ( 𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdexg | ⊢ ( 𝑉 ∈ 𝑌 → Word 𝑉 ∈ V ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉 ) → Word 𝑉 ∈ V ) |
| 3 | rabexg | ⊢ ( Word 𝑉 ∈ V → { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ∈ V ) | |
| 4 | mptexg | ⊢ ( { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ∈ V → ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( ( 𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) ∈ V ) |
| 6 | fveqeq2 | ⊢ ( 𝑤 = 𝑢 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ ( ♯ ‘ 𝑢 ) = 2 ) ) | |
| 7 | fveq1 | ⊢ ( 𝑤 = 𝑢 → ( 𝑤 ‘ 0 ) = ( 𝑢 ‘ 0 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑤 = 𝑢 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑢 ‘ 0 ) = 𝑃 ) ) |
| 9 | fveq1 | ⊢ ( 𝑤 = 𝑢 → ( 𝑤 ‘ 1 ) = ( 𝑢 ‘ 1 ) ) | |
| 10 | 7 9 | preq12d | ⊢ ( 𝑤 = 𝑢 → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } = { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ) |
| 11 | 10 | eleq1d | ⊢ ( 𝑤 = 𝑢 → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ∈ 𝑋 ) ) |
| 12 | 6 8 11 | 3anbi123d | ⊢ ( 𝑤 = 𝑢 → ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑢 ) = 2 ∧ ( 𝑢 ‘ 0 ) = 𝑃 ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 13 | 12 | cbvrabv | ⊢ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } = { 𝑢 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑢 ) = 2 ∧ ( 𝑢 ‘ 0 ) = 𝑃 ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ∈ 𝑋 ) } |
| 14 | preq2 | ⊢ ( 𝑛 = 𝑝 → { 𝑃 , 𝑛 } = { 𝑃 , 𝑝 } ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑛 = 𝑝 → ( { 𝑃 , 𝑛 } ∈ 𝑋 ↔ { 𝑃 , 𝑝 } ∈ 𝑋 ) ) |
| 16 | 15 | cbvrabv | ⊢ { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } = { 𝑝 ∈ 𝑉 ∣ { 𝑃 , 𝑝 } ∈ 𝑋 } |
| 17 | fveqeq2 | ⊢ ( 𝑡 = 𝑤 → ( ( ♯ ‘ 𝑡 ) = 2 ↔ ( ♯ ‘ 𝑤 ) = 2 ) ) | |
| 18 | fveq1 | ⊢ ( 𝑡 = 𝑤 → ( 𝑡 ‘ 0 ) = ( 𝑤 ‘ 0 ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝑡 = 𝑤 → ( ( 𝑡 ‘ 0 ) = 𝑃 ↔ ( 𝑤 ‘ 0 ) = 𝑃 ) ) |
| 20 | fveq1 | ⊢ ( 𝑡 = 𝑤 → ( 𝑡 ‘ 1 ) = ( 𝑤 ‘ 1 ) ) | |
| 21 | 18 20 | preq12d | ⊢ ( 𝑡 = 𝑤 → { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } = { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ) |
| 22 | 21 | eleq1d | ⊢ ( 𝑡 = 𝑤 → ( { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ) |
| 23 | 17 19 22 | 3anbi123d | ⊢ ( 𝑡 = 𝑤 → ( ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 24 | 23 | cbvrabv | ⊢ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } |
| 25 | 24 | mpteq1i | ⊢ ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) = ( 𝑥 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) |
| 26 | 13 16 25 | wwlktovf1o | ⊢ ( 𝑃 ∈ 𝑉 → ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } ) |
| 27 | 26 | adantl | ⊢ ( ( 𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } ) |
| 28 | f1oeq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) → ( 𝑓 : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } ↔ ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) } ↦ ( 𝑥 ‘ 1 ) ) : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } ) ) | |
| 29 | 5 27 28 | spcedv | ⊢ ( ( 𝑉 ∈ 𝑌 ∧ 𝑃 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } ) |