This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 27-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlktovf1o.d | |- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
|
| wwlktovf1o.r | |- R = { n e. V | { P , n } e. X } |
||
| wwlktovf1o.f | |- F = ( t e. D |-> ( t ` 1 ) ) |
||
| Assertion | wwlktovf1 | |- F : D -1-1-> R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlktovf1o.d | |- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
|
| 2 | wwlktovf1o.r | |- R = { n e. V | { P , n } e. X } |
|
| 3 | wwlktovf1o.f | |- F = ( t e. D |-> ( t ` 1 ) ) |
|
| 4 | 1 2 3 | wwlktovf | |- F : D --> R |
| 5 | fveq1 | |- ( t = x -> ( t ` 1 ) = ( x ` 1 ) ) |
|
| 6 | fvex | |- ( x ` 1 ) e. _V |
|
| 7 | 5 3 6 | fvmpt | |- ( x e. D -> ( F ` x ) = ( x ` 1 ) ) |
| 8 | fveq1 | |- ( t = y -> ( t ` 1 ) = ( y ` 1 ) ) |
|
| 9 | fvex | |- ( y ` 1 ) e. _V |
|
| 10 | 8 3 9 | fvmpt | |- ( y e. D -> ( F ` y ) = ( y ` 1 ) ) |
| 11 | 7 10 | eqeqan12d | |- ( ( x e. D /\ y e. D ) -> ( ( F ` x ) = ( F ` y ) <-> ( x ` 1 ) = ( y ` 1 ) ) ) |
| 12 | fveqeq2 | |- ( w = x -> ( ( # ` w ) = 2 <-> ( # ` x ) = 2 ) ) |
|
| 13 | fveq1 | |- ( w = x -> ( w ` 0 ) = ( x ` 0 ) ) |
|
| 14 | 13 | eqeq1d | |- ( w = x -> ( ( w ` 0 ) = P <-> ( x ` 0 ) = P ) ) |
| 15 | fveq1 | |- ( w = x -> ( w ` 1 ) = ( x ` 1 ) ) |
|
| 16 | 13 15 | preq12d | |- ( w = x -> { ( w ` 0 ) , ( w ` 1 ) } = { ( x ` 0 ) , ( x ` 1 ) } ) |
| 17 | 16 | eleq1d | |- ( w = x -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) |
| 18 | 12 14 17 | 3anbi123d | |- ( w = x -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) ) |
| 19 | 18 1 | elrab2 | |- ( x e. D <-> ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) ) |
| 20 | fveqeq2 | |- ( w = y -> ( ( # ` w ) = 2 <-> ( # ` y ) = 2 ) ) |
|
| 21 | fveq1 | |- ( w = y -> ( w ` 0 ) = ( y ` 0 ) ) |
|
| 22 | 21 | eqeq1d | |- ( w = y -> ( ( w ` 0 ) = P <-> ( y ` 0 ) = P ) ) |
| 23 | fveq1 | |- ( w = y -> ( w ` 1 ) = ( y ` 1 ) ) |
|
| 24 | 21 23 | preq12d | |- ( w = y -> { ( w ` 0 ) , ( w ` 1 ) } = { ( y ` 0 ) , ( y ` 1 ) } ) |
| 25 | 24 | eleq1d | |- ( w = y -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) |
| 26 | 20 22 25 | 3anbi123d | |- ( w = y -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) |
| 27 | 26 1 | elrab2 | |- ( y e. D <-> ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) |
| 28 | simpr1 | |- ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) -> ( # ` x ) = 2 ) |
|
| 29 | simpr1 | |- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> ( # ` y ) = 2 ) |
|
| 30 | 29 | eqcomd | |- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> 2 = ( # ` y ) ) |
| 31 | 28 30 | sylan9eq | |- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( # ` x ) = ( # ` y ) ) |
| 32 | 31 | adantr | |- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( # ` x ) = ( # ` y ) ) |
| 33 | simpr2 | |- ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) -> ( x ` 0 ) = P ) |
|
| 34 | simpr2 | |- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> ( y ` 0 ) = P ) |
|
| 35 | 34 | eqcomd | |- ( ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) -> P = ( y ` 0 ) ) |
| 36 | 33 35 | sylan9eq | |- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( x ` 0 ) = ( y ` 0 ) ) |
| 37 | 36 | adantr | |- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( x ` 0 ) = ( y ` 0 ) ) |
| 38 | simpr | |- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( x ` 1 ) = ( y ` 1 ) ) |
|
| 39 | oveq2 | |- ( ( # ` x ) = 2 -> ( 0 ..^ ( # ` x ) ) = ( 0 ..^ 2 ) ) |
|
| 40 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 41 | 39 40 | eqtrdi | |- ( ( # ` x ) = 2 -> ( 0 ..^ ( # ` x ) ) = { 0 , 1 } ) |
| 42 | 41 | raleqdv | |- ( ( # ` x ) = 2 -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> A. i e. { 0 , 1 } ( x ` i ) = ( y ` i ) ) ) |
| 43 | c0ex | |- 0 e. _V |
|
| 44 | 1ex | |- 1 e. _V |
|
| 45 | fveq2 | |- ( i = 0 -> ( x ` i ) = ( x ` 0 ) ) |
|
| 46 | fveq2 | |- ( i = 0 -> ( y ` i ) = ( y ` 0 ) ) |
|
| 47 | 45 46 | eqeq12d | |- ( i = 0 -> ( ( x ` i ) = ( y ` i ) <-> ( x ` 0 ) = ( y ` 0 ) ) ) |
| 48 | fveq2 | |- ( i = 1 -> ( x ` i ) = ( x ` 1 ) ) |
|
| 49 | fveq2 | |- ( i = 1 -> ( y ` i ) = ( y ` 1 ) ) |
|
| 50 | 48 49 | eqeq12d | |- ( i = 1 -> ( ( x ` i ) = ( y ` i ) <-> ( x ` 1 ) = ( y ` 1 ) ) ) |
| 51 | 43 44 47 50 | ralpr | |- ( A. i e. { 0 , 1 } ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) |
| 52 | 42 51 | bitrdi | |- ( ( # ` x ) = 2 -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) ) |
| 53 | 52 | 3ad2ant1 | |- ( ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) ) |
| 54 | 53 | ad3antlr | |- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) <-> ( ( x ` 0 ) = ( y ` 0 ) /\ ( x ` 1 ) = ( y ` 1 ) ) ) ) |
| 55 | 37 38 54 | mpbir2and | |- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) |
| 56 | eqwrd | |- ( ( x e. Word V /\ y e. Word V ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) ) ) |
|
| 57 | 56 | ad2ant2r | |- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) ) ) |
| 58 | 57 | adantr | |- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ A. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) = ( y ` i ) ) ) ) |
| 59 | 32 55 58 | mpbir2and | |- ( ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) /\ ( x ` 1 ) = ( y ` 1 ) ) -> x = y ) |
| 60 | 59 | ex | |- ( ( ( x e. Word V /\ ( ( # ` x ) = 2 /\ ( x ` 0 ) = P /\ { ( x ` 0 ) , ( x ` 1 ) } e. X ) ) /\ ( y e. Word V /\ ( ( # ` y ) = 2 /\ ( y ` 0 ) = P /\ { ( y ` 0 ) , ( y ` 1 ) } e. X ) ) ) -> ( ( x ` 1 ) = ( y ` 1 ) -> x = y ) ) |
| 61 | 19 27 60 | syl2anb | |- ( ( x e. D /\ y e. D ) -> ( ( x ` 1 ) = ( y ` 1 ) -> x = y ) ) |
| 62 | 11 61 | sylbid | |- ( ( x e. D /\ y e. D ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 63 | 62 | rgen2 | |- A. x e. D A. y e. D ( ( F ` x ) = ( F ` y ) -> x = y ) |
| 64 | dff13 | |- ( F : D -1-1-> R <-> ( F : D --> R /\ A. x e. D A. y e. D ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 65 | 4 63 64 | mpbir2an | |- F : D -1-1-> R |