This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 27-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlktovf1o.d | ⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } | |
| wwlktovf1o.r | ⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } | ||
| wwlktovf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) | ||
| Assertion | wwlktovf | ⊢ 𝐹 : 𝐷 ⟶ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlktovf1o.d | ⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } | |
| 2 | wwlktovf1o.r | ⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } | |
| 3 | wwlktovf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) | |
| 4 | wrdf | ⊢ ( 𝑡 ∈ Word 𝑉 → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 ) | |
| 5 | oveq2 | ⊢ ( ( ♯ ‘ 𝑡 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝑡 ) ) = ( 0 ..^ 2 ) ) | |
| 6 | 5 | feq2d | ⊢ ( ( ♯ ‘ 𝑡 ) = 2 → ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 ↔ 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉 ) ) |
| 7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 8 | 2nn | ⊢ 2 ∈ ℕ | |
| 9 | 1lt2 | ⊢ 1 < 2 | |
| 10 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) | |
| 11 | 7 8 9 10 | mpbir3an | ⊢ 1 ∈ ( 0 ..^ 2 ) |
| 12 | ffvelcdm | ⊢ ( ( 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉 ∧ 1 ∈ ( 0 ..^ 2 ) ) → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) | |
| 13 | 11 12 | mpan2 | ⊢ ( 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉 → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) |
| 14 | 6 13 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑡 ) = 2 → ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) → ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) ) |
| 16 | 4 15 | mpan9 | ⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) |
| 17 | preq1 | ⊢ ( ( 𝑡 ‘ 0 ) = 𝑃 → { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } = { 𝑃 , ( 𝑡 ‘ 1 ) } ) | |
| 18 | 17 | eleq1d | ⊢ ( ( 𝑡 ‘ 0 ) = 𝑃 → ( { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ↔ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
| 19 | 18 | biimpa | ⊢ ( ( ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) → { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) |
| 20 | 19 | 3adant1 | ⊢ ( ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) → { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) → { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) |
| 22 | 16 21 | jca | ⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) → ( ( 𝑡 ‘ 1 ) ∈ 𝑉 ∧ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
| 23 | fveqeq2 | ⊢ ( 𝑤 = 𝑡 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ ( ♯ ‘ 𝑡 ) = 2 ) ) | |
| 24 | fveq1 | ⊢ ( 𝑤 = 𝑡 → ( 𝑤 ‘ 0 ) = ( 𝑡 ‘ 0 ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( 𝑤 = 𝑡 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑡 ‘ 0 ) = 𝑃 ) ) |
| 26 | fveq1 | ⊢ ( 𝑤 = 𝑡 → ( 𝑤 ‘ 1 ) = ( 𝑡 ‘ 1 ) ) | |
| 27 | 24 26 | preq12d | ⊢ ( 𝑤 = 𝑡 → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } = { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ) |
| 28 | 27 | eleq1d | ⊢ ( 𝑤 = 𝑡 → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
| 29 | 23 25 28 | 3anbi123d | ⊢ ( 𝑤 = 𝑡 → ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 30 | 29 1 | elrab2 | ⊢ ( 𝑡 ∈ 𝐷 ↔ ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) ) |
| 31 | preq2 | ⊢ ( 𝑛 = ( 𝑡 ‘ 1 ) → { 𝑃 , 𝑛 } = { 𝑃 , ( 𝑡 ‘ 1 ) } ) | |
| 32 | 31 | eleq1d | ⊢ ( 𝑛 = ( 𝑡 ‘ 1 ) → ( { 𝑃 , 𝑛 } ∈ 𝑋 ↔ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
| 33 | 32 2 | elrab2 | ⊢ ( ( 𝑡 ‘ 1 ) ∈ 𝑅 ↔ ( ( 𝑡 ‘ 1 ) ∈ 𝑉 ∧ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
| 34 | 22 30 33 | 3imtr4i | ⊢ ( 𝑡 ∈ 𝐷 → ( 𝑡 ‘ 1 ) ∈ 𝑅 ) |
| 35 | 3 34 | fmpti | ⊢ 𝐹 : 𝐷 ⟶ 𝑅 |