This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | weniso | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → 𝐹 = ( I ↾ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 | ⊢ ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ) | |
| 2 | rexnal | ⊢ ( ∃ 𝑎 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ¬ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) | |
| 3 | 1 2 | bitri | ⊢ ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ↔ ¬ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 4 | simpl1 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → 𝑅 We 𝐴 ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → 𝑅 Se 𝐴 ) | |
| 6 | ssrab2 | ⊢ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ⊆ 𝐴 | |
| 7 | 6 | a1i | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ⊆ 𝐴 ) |
| 8 | simpr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) | |
| 9 | wereu2 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ⊆ 𝐴 ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) ) → ∃! 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) | |
| 10 | 4 5 7 8 9 | syl22anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → ∃! 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) |
| 11 | reurex | ⊢ ( ∃! 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ ) → ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) |
| 13 | 12 | ex | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ → ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ) ) |
| 14 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 15 | id | ⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 17 | 16 | notbid | ⊢ ( 𝑎 = 𝑏 → ( ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 18 | 17 | elrab | ⊢ ( 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ↔ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 19 | fveq2 | ⊢ ( 𝑎 = 𝑐 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) | |
| 20 | id | ⊢ ( 𝑎 = 𝑐 → 𝑎 = 𝑐 ) | |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 22 | 21 | notbid | ⊢ ( 𝑎 = 𝑐 → ( ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 ↔ ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 23 | 22 | ralrab | ⊢ ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ↔ ∀ 𝑐 ∈ 𝐴 ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ) |
| 24 | con34b | ⊢ ( ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ↔ ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ) | |
| 25 | 24 | bicomi | ⊢ ( ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ↔ ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 26 | 25 | ralbii | ⊢ ( ∀ 𝑐 ∈ 𝐴 ( ¬ ( 𝐹 ‘ 𝑐 ) = 𝑐 → ¬ 𝑐 𝑅 𝑏 ) ↔ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 27 | 23 26 | bitri | ⊢ ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 ↔ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ) |
| 28 | simpl3 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) | |
| 29 | isof1o | ⊢ ( 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 31 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 33 | simprl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝑏 ∈ 𝐴 ) | |
| 34 | 32 33 | ffvelcdmd | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 ) |
| 35 | breq1 | ⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( 𝑐 𝑅 𝑏 ↔ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) | |
| 36 | fveq2 | ⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) ) | |
| 37 | id | ⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → 𝑐 = ( 𝐹 ‘ 𝑏 ) ) | |
| 38 | 36 37 | eqeq12d | ⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑐 ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 39 | 35 38 | imbi12d | ⊢ ( 𝑐 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ↔ ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 40 | 39 | rspcv | ⊢ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 41 | 34 40 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 42 | 41 | com23 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 43 | 42 | imp | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 44 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 –1-1→ 𝐴 ) | |
| 45 | 30 44 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝐹 : 𝐴 –1-1→ 𝐴 ) |
| 46 | f1fveq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) | |
| 47 | 45 34 33 46 | syl12anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 48 | pm2.21 | ⊢ ( ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) | |
| 49 | 48 | ad2antll | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 50 | 47 49 | sylbid | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) → ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 52 | 43 51 | syld | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 53 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 54 | f1of | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 ⟶ 𝐴 ) | |
| 55 | 30 53 54 | 3syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ◡ 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 56 | 55 33 | ffvelcdmd | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 ) |
| 58 | isorel | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ∧ ( ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) | |
| 59 | 28 56 33 58 | syl12anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 60 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) | |
| 61 | 30 33 60 | syl2anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 62 | 61 | breq1d | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ↔ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 63 | 59 62 | bitr2d | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ↔ ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) |
| 64 | 63 | biimpa | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) |
| 65 | breq1 | ⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( 𝑐 𝑅 𝑏 ↔ ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) | |
| 66 | fveq2 | ⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) | |
| 67 | id | ⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) ) | |
| 68 | 66 67 | eqeq12d | ⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑐 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 69 | 65 68 | imbi12d | ⊢ ( 𝑐 = ( ◡ 𝐹 ‘ 𝑏 ) → ( ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) ↔ ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 70 | 69 | rspcv | ⊢ ( ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 71 | 70 | com23 | ⊢ ( ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝐴 → ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 72 | 57 64 71 | sylc | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 73 | simplrr | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) | |
| 74 | fveq2 | ⊢ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) | |
| 75 | 74 | adantl | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 76 | 61 | fveq2d | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ 𝑏 ) ) |
| 77 | 76 | adantr | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝐹 ‘ 𝑏 ) ) |
| 78 | 61 | adantr | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 79 | 75 77 78 | 3eqtr3d | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) = 𝑏 ) |
| 80 | 73 79 48 | sylc | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 81 | 80 | ex | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 82 | 81 | adantr | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = ( ◡ 𝐹 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 83 | 72 82 | syld | ⊢ ( ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) ∧ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 84 | simprr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) | |
| 85 | simpl1 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝑅 We 𝐴 ) | |
| 86 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → 𝑅 Or 𝐴 ) |
| 88 | sotrieq | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 ↔ ¬ ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) ) | |
| 89 | 87 34 33 88 | syl12anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑏 ↔ ¬ ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 90 | 89 | con2bid | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ↔ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) |
| 91 | 84 90 | mpbird | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ∨ 𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 92 | 52 83 91 | mpjaodan | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝐹 ‘ 𝑐 ) = 𝑐 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 93 | 27 92 | biimtrid | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) ) → ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 94 | 93 | ex | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ( 𝑏 ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑏 ) = 𝑏 ) → ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) ) |
| 95 | 18 94 | biimtrid | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } → ( ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) ) |
| 96 | 95 | rexlimdv | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ∃ 𝑏 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ∀ 𝑐 ∈ { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ¬ 𝑐 𝑅 𝑏 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 97 | 13 96 | syld | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( { 𝑎 ∈ 𝐴 ∣ ¬ ( 𝐹 ‘ 𝑎 ) = 𝑎 } ≠ ∅ → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 98 | 3 97 | biimtrrid | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( ¬ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 99 | 98 | pm2.18d | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 ) |
| 100 | fvresi | ⊢ ( 𝑎 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑎 ) = 𝑎 ) | |
| 101 | 100 | eqeq2d | ⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = 𝑎 ) ) |
| 102 | 101 | biimprd | ⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑎 ) = 𝑎 → ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) ) |
| 103 | 102 | ralimia | ⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = 𝑎 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) |
| 104 | 99 103 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) |
| 105 | 29 | 3ad2ant3 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 106 | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 Fn 𝐴 ) | |
| 107 | 105 106 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 108 | fnresi | ⊢ ( I ↾ 𝐴 ) Fn 𝐴 | |
| 109 | 108 | a1i | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( I ↾ 𝐴 ) Fn 𝐴 ) |
| 110 | eqfnfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) ) | |
| 111 | 107 109 110 | syl2anc | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → ( 𝐹 = ( I ↾ 𝐴 ) ↔ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( I ↾ 𝐴 ) ‘ 𝑎 ) ) ) |
| 112 | 104 111 | mpbird | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ) → 𝐹 = ( I ↾ 𝐴 ) ) |