This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | weniso | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> F = ( _I |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 | |- ( { a e. A | -. ( F ` a ) = a } =/= (/) <-> E. a e. A -. ( F ` a ) = a ) |
|
| 2 | rexnal | |- ( E. a e. A -. ( F ` a ) = a <-> -. A. a e. A ( F ` a ) = a ) |
|
| 3 | 1 2 | bitri | |- ( { a e. A | -. ( F ` a ) = a } =/= (/) <-> -. A. a e. A ( F ` a ) = a ) |
| 4 | simpl1 | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> R We A ) |
|
| 5 | simpl2 | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> R Se A ) |
|
| 6 | ssrab2 | |- { a e. A | -. ( F ` a ) = a } C_ A |
|
| 7 | 6 | a1i | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> { a e. A | -. ( F ` a ) = a } C_ A ) |
| 8 | simpr | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> { a e. A | -. ( F ` a ) = a } =/= (/) ) |
|
| 9 | wereu2 | |- ( ( ( R We A /\ R Se A ) /\ ( { a e. A | -. ( F ` a ) = a } C_ A /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) ) -> E! b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
|
| 10 | 4 5 7 8 9 | syl22anc | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> E! b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
| 11 | reurex | |- ( E! b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
|
| 12 | 10 11 | syl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
| 13 | 12 | ex | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( { a e. A | -. ( F ` a ) = a } =/= (/) -> E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) ) |
| 14 | fveq2 | |- ( a = b -> ( F ` a ) = ( F ` b ) ) |
|
| 15 | id | |- ( a = b -> a = b ) |
|
| 16 | 14 15 | eqeq12d | |- ( a = b -> ( ( F ` a ) = a <-> ( F ` b ) = b ) ) |
| 17 | 16 | notbid | |- ( a = b -> ( -. ( F ` a ) = a <-> -. ( F ` b ) = b ) ) |
| 18 | 17 | elrab | |- ( b e. { a e. A | -. ( F ` a ) = a } <-> ( b e. A /\ -. ( F ` b ) = b ) ) |
| 19 | fveq2 | |- ( a = c -> ( F ` a ) = ( F ` c ) ) |
|
| 20 | id | |- ( a = c -> a = c ) |
|
| 21 | 19 20 | eqeq12d | |- ( a = c -> ( ( F ` a ) = a <-> ( F ` c ) = c ) ) |
| 22 | 21 | notbid | |- ( a = c -> ( -. ( F ` a ) = a <-> -. ( F ` c ) = c ) ) |
| 23 | 22 | ralrab | |- ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b <-> A. c e. A ( -. ( F ` c ) = c -> -. c R b ) ) |
| 24 | con34b | |- ( ( c R b -> ( F ` c ) = c ) <-> ( -. ( F ` c ) = c -> -. c R b ) ) |
|
| 25 | 24 | bicomi | |- ( ( -. ( F ` c ) = c -> -. c R b ) <-> ( c R b -> ( F ` c ) = c ) ) |
| 26 | 25 | ralbii | |- ( A. c e. A ( -. ( F ` c ) = c -> -. c R b ) <-> A. c e. A ( c R b -> ( F ` c ) = c ) ) |
| 27 | 23 26 | bitri | |- ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b <-> A. c e. A ( c R b -> ( F ` c ) = c ) ) |
| 28 | simpl3 | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F Isom R , R ( A , A ) ) |
|
| 29 | isof1o | |- ( F Isom R , R ( A , A ) -> F : A -1-1-onto-> A ) |
|
| 30 | 28 29 | syl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F : A -1-1-onto-> A ) |
| 31 | f1of | |- ( F : A -1-1-onto-> A -> F : A --> A ) |
|
| 32 | 30 31 | syl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F : A --> A ) |
| 33 | simprl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> b e. A ) |
|
| 34 | 32 33 | ffvelcdmd | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( F ` b ) e. A ) |
| 35 | breq1 | |- ( c = ( F ` b ) -> ( c R b <-> ( F ` b ) R b ) ) |
|
| 36 | fveq2 | |- ( c = ( F ` b ) -> ( F ` c ) = ( F ` ( F ` b ) ) ) |
|
| 37 | id | |- ( c = ( F ` b ) -> c = ( F ` b ) ) |
|
| 38 | 36 37 | eqeq12d | |- ( c = ( F ` b ) -> ( ( F ` c ) = c <-> ( F ` ( F ` b ) ) = ( F ` b ) ) ) |
| 39 | 35 38 | imbi12d | |- ( c = ( F ` b ) -> ( ( c R b -> ( F ` c ) = c ) <-> ( ( F ` b ) R b -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 40 | 39 | rspcv | |- ( ( F ` b ) e. A -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( ( F ` b ) R b -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 41 | 34 40 | syl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( ( F ` b ) R b -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 42 | 41 | com23 | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) R b -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 43 | 42 | imp | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` b ) R b ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) |
| 44 | f1of1 | |- ( F : A -1-1-onto-> A -> F : A -1-1-> A ) |
|
| 45 | 30 44 | syl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F : A -1-1-> A ) |
| 46 | f1fveq | |- ( ( F : A -1-1-> A /\ ( ( F ` b ) e. A /\ b e. A ) ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) <-> ( F ` b ) = b ) ) |
|
| 47 | 45 34 33 46 | syl12anc | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) <-> ( F ` b ) = b ) ) |
| 48 | pm2.21 | |- ( -. ( F ` b ) = b -> ( ( F ` b ) = b -> A. a e. A ( F ` a ) = a ) ) |
|
| 49 | 48 | ad2antll | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) = b -> A. a e. A ( F ` a ) = a ) ) |
| 50 | 47 49 | sylbid | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 51 | 50 | adantr | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` b ) R b ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 52 | 43 51 | syld | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` b ) R b ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> A. a e. A ( F ` a ) = a ) ) |
| 53 | f1ocnv | |- ( F : A -1-1-onto-> A -> `' F : A -1-1-onto-> A ) |
|
| 54 | f1of | |- ( `' F : A -1-1-onto-> A -> `' F : A --> A ) |
|
| 55 | 30 53 54 | 3syl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> `' F : A --> A ) |
| 56 | 55 33 | ffvelcdmd | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( `' F ` b ) e. A ) |
| 57 | 56 | adantr | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( `' F ` b ) e. A ) |
| 58 | isorel | |- ( ( F Isom R , R ( A , A ) /\ ( ( `' F ` b ) e. A /\ b e. A ) ) -> ( ( `' F ` b ) R b <-> ( F ` ( `' F ` b ) ) R ( F ` b ) ) ) |
|
| 59 | 28 56 33 58 | syl12anc | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( `' F ` b ) R b <-> ( F ` ( `' F ` b ) ) R ( F ` b ) ) ) |
| 60 | f1ocnvfv2 | |- ( ( F : A -1-1-onto-> A /\ b e. A ) -> ( F ` ( `' F ` b ) ) = b ) |
|
| 61 | 30 33 60 | syl2anc | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( F ` ( `' F ` b ) ) = b ) |
| 62 | 61 | breq1d | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( `' F ` b ) ) R ( F ` b ) <-> b R ( F ` b ) ) ) |
| 63 | 59 62 | bitr2d | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( b R ( F ` b ) <-> ( `' F ` b ) R b ) ) |
| 64 | 63 | biimpa | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( `' F ` b ) R b ) |
| 65 | breq1 | |- ( c = ( `' F ` b ) -> ( c R b <-> ( `' F ` b ) R b ) ) |
|
| 66 | fveq2 | |- ( c = ( `' F ` b ) -> ( F ` c ) = ( F ` ( `' F ` b ) ) ) |
|
| 67 | id | |- ( c = ( `' F ` b ) -> c = ( `' F ` b ) ) |
|
| 68 | 66 67 | eqeq12d | |- ( c = ( `' F ` b ) -> ( ( F ` c ) = c <-> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) |
| 69 | 65 68 | imbi12d | |- ( c = ( `' F ` b ) -> ( ( c R b -> ( F ` c ) = c ) <-> ( ( `' F ` b ) R b -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) ) |
| 70 | 69 | rspcv | |- ( ( `' F ` b ) e. A -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( ( `' F ` b ) R b -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) ) |
| 71 | 70 | com23 | |- ( ( `' F ` b ) e. A -> ( ( `' F ` b ) R b -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) ) |
| 72 | 57 64 71 | sylc | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) |
| 73 | simplrr | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> -. ( F ` b ) = b ) |
|
| 74 | fveq2 | |- ( ( F ` ( `' F ` b ) ) = ( `' F ` b ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` ( `' F ` b ) ) ) |
|
| 75 | 74 | adantl | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` ( `' F ` b ) ) ) |
| 76 | 61 | fveq2d | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` b ) ) |
| 77 | 76 | adantr | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` b ) ) |
| 78 | 61 | adantr | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` ( `' F ` b ) ) = b ) |
| 79 | 75 77 78 | 3eqtr3d | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` b ) = b ) |
| 80 | 73 79 48 | sylc | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> A. a e. A ( F ` a ) = a ) |
| 81 | 80 | ex | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( `' F ` b ) ) = ( `' F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 82 | 81 | adantr | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( ( F ` ( `' F ` b ) ) = ( `' F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 83 | 72 82 | syld | |- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> A. a e. A ( F ` a ) = a ) ) |
| 84 | simprr | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> -. ( F ` b ) = b ) |
|
| 85 | simpl1 | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> R We A ) |
|
| 86 | weso | |- ( R We A -> R Or A ) |
|
| 87 | 85 86 | syl | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> R Or A ) |
| 88 | sotrieq | |- ( ( R Or A /\ ( ( F ` b ) e. A /\ b e. A ) ) -> ( ( F ` b ) = b <-> -. ( ( F ` b ) R b \/ b R ( F ` b ) ) ) ) |
|
| 89 | 87 34 33 88 | syl12anc | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) = b <-> -. ( ( F ` b ) R b \/ b R ( F ` b ) ) ) ) |
| 90 | 89 | con2bid | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( ( F ` b ) R b \/ b R ( F ` b ) ) <-> -. ( F ` b ) = b ) ) |
| 91 | 84 90 | mpbird | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) R b \/ b R ( F ` b ) ) ) |
| 92 | 52 83 91 | mpjaodan | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> A. a e. A ( F ` a ) = a ) ) |
| 93 | 27 92 | biimtrid | |- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) |
| 94 | 93 | ex | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( ( b e. A /\ -. ( F ` b ) = b ) -> ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) ) |
| 95 | 18 94 | biimtrid | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( b e. { a e. A | -. ( F ` a ) = a } -> ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) ) |
| 96 | 95 | rexlimdv | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) |
| 97 | 13 96 | syld | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( { a e. A | -. ( F ` a ) = a } =/= (/) -> A. a e. A ( F ` a ) = a ) ) |
| 98 | 3 97 | biimtrrid | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( -. A. a e. A ( F ` a ) = a -> A. a e. A ( F ` a ) = a ) ) |
| 99 | 98 | pm2.18d | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> A. a e. A ( F ` a ) = a ) |
| 100 | fvresi | |- ( a e. A -> ( ( _I |` A ) ` a ) = a ) |
|
| 101 | 100 | eqeq2d | |- ( a e. A -> ( ( F ` a ) = ( ( _I |` A ) ` a ) <-> ( F ` a ) = a ) ) |
| 102 | 101 | biimprd | |- ( a e. A -> ( ( F ` a ) = a -> ( F ` a ) = ( ( _I |` A ) ` a ) ) ) |
| 103 | 102 | ralimia | |- ( A. a e. A ( F ` a ) = a -> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) |
| 104 | 99 103 | syl | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) |
| 105 | 29 | 3ad2ant3 | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> F : A -1-1-onto-> A ) |
| 106 | f1ofn | |- ( F : A -1-1-onto-> A -> F Fn A ) |
|
| 107 | 105 106 | syl | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> F Fn A ) |
| 108 | fnresi | |- ( _I |` A ) Fn A |
|
| 109 | 108 | a1i | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( _I |` A ) Fn A ) |
| 110 | eqfnfv | |- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> ( F = ( _I |` A ) <-> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) ) |
|
| 111 | 107 109 110 | syl2anc | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( F = ( _I |` A ) <-> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) ) |
| 112 | 104 111 | mpbird | |- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> F = ( _I |` A ) ) |